COUNTING SUBGROUPS OF $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$

KEITH CONRAD

Fix a prime p. For nonnegative integers a, b, and d, we seek a formula for the number of subgroups of order p^d in $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$. Set

$$N_{a,b,d} = \# \{ H \subset \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z} : \#H = p^d \}.$$

This is symmetric in a and b ($N_{a,b,d} = N_{b,a,d}$), so when it is convenient we can limit attention to the case $a \leq b$. Trivially $N_{a,b,d} = 0$ if $d > a + b$, so we may assume $0 \leq d \leq a + b$. For $1 \leq a \leq b$, and $a + b \geq d$, we will see that

$$N_{a,b,d} = 1 + p + p^2 + \cdots + p^r,$$

where $r = r(a,b)$ is a somewhat irregular function of a and b (the precise rule is given in Theorem 3).

Throughout, we write $G_{a,b} = \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$.

For any abelian group G, its m-torsion subgroup will be denoted $G[m] = \{ g \in G : g^m = e \}$.

We will develop a recursive formula for $N_{a,b,d}$ that requires knowing in advance how many cyclic subgroups there are of each size in $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$. So first we work out a formula for the number of cyclic subgroups. Write it as

$$C_{a,b,d} = \# \{ H \subset \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z} : \#H = p^d, H \text{ is cyclic} \}.$$

Theorem 1. When $1 \leq a \leq b$,

$$C_{a,b,d} = \begin{cases}
1, & \text{if } d = 0, \\
p^d - 1 + p^d, & \text{if } 1 \leq d \leq a, \\
p^a, & \text{if } a + 1 \leq d \leq b \ (\text{if } a \neq b), \\
0, & \text{if } b < d.
\end{cases}$$

In particular, $C_{a,b,1} = 1 + p$.

Proof. The cases $d = 0$ and $d > b$ are clear. So we may assume $1 \leq d \leq b$. To count subgroups of order p^d we count elements of order p^d and then divide by $\varphi(p^d)$ (the number of generators a cyclic group of order p^d has). An element has order p^d when it’s killed by p^d but not by p^{d-1}, so

$$C_{a,b,d} = \frac{\#G_{a,b}[p^d] - \#G_{a,b}[p^{d-1}]}{\varphi(p^d)}.$$

How large is $G_{a,b}[p^i]$? If $0 \leq i \leq a$,

$$G_{a,b}[p^i] = \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^i\mathbb{Z} \implies \text{size is } p^{2i}.$$

If $a \leq i \leq b$,

$$G_{a,b}[p^i] = \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^{b-i}\mathbb{Z} \implies \text{size is } p^{a+i}.$$

If $i > b$,

$$G_{a,b}[p^i] = \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z} \implies \text{size is } p^{a+b}.$$
Putting this all together,
\[\#G_{a,b}[p^i] = \begin{cases}
p^{2i}, & \text{if } 0 \leq i \leq a,
p^{a+i}, & \text{if } a < i < b,
p^{a+b}, & \text{if } i \geq b. \end{cases} \]
(The overlapping cases are consistent at \(i = a \) and \(i = b \).)

Now we feed the above formula for \(\#G_{a,b}[p^i] \) at \(i = d \) and \(i = d - 1 \) into the formula for \(C_{a,b,d} \). If \(1 \leq d \leq a \),
\[C_{a,b,d} = \frac{p^{2d} - p^{2(d-1)}}{p^{d-1}(p - 1)} = \frac{p^{2d-2}(p^2 - 1)}{p^{d-1}(p - 1)} = \frac{p^d(p + 1)}{p^{d-1}(p - 1)} = p^{d-1} + p^d. \]
If \(a < b \) and \(a + 1 \leq d \leq b \),
\[C_{a,b,d} = \frac{p^{a+d} - p^{a+d-1}}{p^{d-1}(p - 1)} = \frac{p^{a+d-1}(p - 1)}{p^{d-1}(p - 1)} = p^a. \]

\[\square \]

Theorem 2. For \(1 \leq a \leq b \), we have
\[N_{a,b,0} = 1 \]
and
\[N_{a,b,1} = C_{a,b,1} = 1 + p. \]
If \(d \geq 2 \) then
\[N_{a,b,d} = C_{a,b,d} + N_{a-1,b-1,d-2}. \]

Proof. A group of order \(p \) is cyclic, so
\[N_{a,b,1} = C_{a,b,1} = 1 + p. \]
Now take \(d \geq 2 \). We can distinguish cyclic from noncyclic subgroups of \(G_{a,b} \) using \(p \)-torsion. The \(p \)-torsion in \(G_{a,b} \) is
\[G_{a,b}[p] = p^{a-1} \mathbb{Z}/p^a \mathbb{Z} \times p^{b-1} \mathbb{Z}/p^b \mathbb{Z}, \]
which has order \(p^2 \), so
\[G_{a,b}/G_{a,b}[p] \cong \mathbb{Z}/p^{a-1}\mathbb{Z} \times \mathbb{Z}/p^{b-1}\mathbb{Z} \cong G_{a-1,b-1}. \]
For any nontrivial subgroup \(H \subset G_{a,b} \), if \(H \) is cyclic then \(H[p] \) has order \(p \), while if \(H \) is noncyclic then \(H \cong \mathbb{Z}/p^j\mathbb{Z} \times \mathbb{Z}/p^k\mathbb{Z} \) for some positive integers \(j \) and \(k \), so \(H[p] \) has order \(p^2 \). Since \(H[p] \subset G_{a,b}[p] \) and \(G_{a,b}[p] \) has order \(p^2 \), \(H[p] = G_{a,b}[p] \). So
\[H \text{ not cyclic} \implies G_{a,b}[p] \subset H \subset G_{a,b}. \]
The converse is true as well, since \(G_{a,b}[p] \cong (\mathbb{Z}/p\mathbb{Z})^2 \) contains more than one subgroup of order \(p \), so it can’t lie inside a cyclic group. So for \(2 \leq d \leq a + b \),
\[\# \{ H \subset G_{a,b} : \#H = p^d, H \text{ not cyclic} \} = \# \{ \overline{H} \subset G_{a,b}/G_{a,b}[p] : \# \overline{H} = p^{d-2} \} = N_{a-1,b-1,d-2}, \]
which leads to a recursive formula: \(N_{a,b,d} \) is the number of cyclic subgroups of \(G_{a,b} \) with order \(p^d \) (which is \(C_{a,b,d} \)) plus the number of noncyclic subgroups of \(G_{a,b} \) with order \(p^d \) (which we just showed is \(N_{a-1,b-1,d-2} \) if \(d \geq 2 \)).
Using Theorems 1 and 2 (and sometimes the equation \(N_{a,b,d} = N_{a,b,a+b-d} \), which follows from duality theory for finite abelian groups), the following formulas for \(N_{a,b,d} \) are found when \(1 \leq a \leq b \) and \(1 \leq d \leq 5 \):

\[
N_{a,b,1} = 1 + p,
\]

\[
N_{a,b,2} = \begin{cases}
1, & \text{if } a = b = 1, \\
1 + p, & \text{if } a = 1, b \geq 2, \\
1 + p + p^2, & \text{if } a \geq 2,
\end{cases}
\]

\[
N_{a,b,3} = \begin{cases}
1, & \text{if } a = 1, b = 2, \\
1 + p, & \text{if } a = 1, b \geq 3; a = 2, b = 2, \\
1 + p + p^2, & \text{if } a = 2, b \geq 3, \\
1 + p + p^2 + p^3, & \text{if } a \geq 3,
\end{cases}
\]

\[
N_{a,b,4} = \begin{cases}
1, & \text{if } a = 1, b = 3; a = 2, b = 2, \\
1 + p, & \text{if } a = 1, b \geq 4; a = 2, b = 3, \\
1 + p + p^2, & \text{if } a = 2, b \geq 4; a = 3, b = 3, \\
1 + p + p^2 + p^3, & \text{if } a = 3, b \geq 4, \\
1 + p + p^2 + p^3 + p^4, & \text{if } a \geq 4,
\end{cases}
\]

and

\[
N_{a,b,5} = \begin{cases}
1, & \text{if } a = 1, b = 4; a = 2, b = 3, \\
1 + p, & \text{if } a = 1, b \geq 5; a = 2, b = 4; a = 3, b = 3, \\
1 + p + p^2, & \text{if } a = 2, b \geq 5; a = 3, b = 4, \\
1 + p + p^2 + p^3, & \text{if } a = 3, b \geq 5; a = 4, b = 4, \\
1 + p + p^2 + p^3 + p^4, & \text{if } a = 4, b \geq 5, \\
1 + p + p^2 + p^3 + p^4 + p^5, & \text{if } a \geq 5.
\end{cases}
\]

Examine these according to the constraints on \(a \) and \(b \) for each formula for \(N_{a,b,d} \). The pattern of cases where inequalities on \(b \) appear is obvious: \(a = 1, b \geq d \), then \(a = 2, b \geq d \), then \(a = 3, b \geq d \), and so on as \(a \) increases up to \(d - 1 \). The remaining cases where \(a \) and \(b \) both have specified values are organized according to increasing values of \(a + b \) for \(1 \leq a \leq b \leq d - 1 \). We are led to the following general theorem.

Theorem 3. If \(1 \leq a \leq b \), then

\[
N_{a,b,d} = \begin{cases}
1 + p + \cdots + p^d, & \text{if } 0 \leq d \leq a, \\
1 + p + \cdots + p^a, & \text{if } a \leq d \leq b, \\
1 + p + \cdots + p^{a+b-d}, & \text{if } b \leq d \leq a + b, \\
0, & \text{if } a + b < d.
\end{cases}
\]

Therefore when \(0 \leq d \leq a + b \), \(N_{a,b,d} = 1 + p + \cdots + p^r \) where \(0 \leq r \leq d \).

Proof. Use induction on \(b \). \(\square \)

Example 4. When \(a = b \),

\[
N_{a,a,d} = \begin{cases}
1 + p + \cdots + p^d, & \text{if } 0 \leq d \leq a, \\
1 + p + \cdots + p^{2a-d}, & \text{if } a \leq d \leq 2a.
\end{cases}
\]
Theorem 3 says that as d increases from 0 to $a+b$, $N_{a,b,d}$ starts out as $1, 1+p, 1+p+p^2, \ldots$, increasing by the next power of p each time until reaching $1+p+\cdots+p^a$ at $d=a$. Then $N_{a,b,d}$ stays at this value until d reaches b, after which the highest power of p is removed for each successive value of d until $N_{a,b,d}$ reaches $N_{a,b,a+b}=1$.

Corollary 5. Suppose $1 \leq a \leq b$.

1. If $1 \leq d \leq a$ then $N_{a,b,d} = N_{a,b,d-1} + p^d$.
2. If $a < d \leq b$ then $N_{a,b,d} = N_{a,b,d-1}$.
3. If $b < d \leq a+b$ then $N_{a,b,d} = N_{a,b,d-1} - p^{a+b-d+1}$.

In particular, $N_{a,b,d} = N_{a,b,d-1} \mod p^d$ if $1 \leq d \leq b$ but not necessarily if $b < d \leq a+b$.

Proof. From the description of how $N_{a,b,d}$ rises, plateaus, and then falls, this is obvious. □

For each a, b, and d, observe that $N_{a,b,d}$ has the same formula for all p. So $N_{a,b,d}$ can be described by a “universal” formula for all primes. More generally, if A is a finite abelian p-group that is a product of cyclic groups of orders p^{e_1}, \ldots, p^{e_r} ($e_i > 0$), then the number of subgroups of A with a particular order p^d is a universal polynomial function of p (same formula for all p) that is determined by d and the exponents e_i. Even more generally, the number of subgroups H of A such that H and A/H have specified cyclic decompositions is given by a universal polynomial in p that is determined by the sizes of the cyclic components of H, A/H, and A; these universal polynomials in p are called Hall polynomials. There is also a formula, due to Delsarte, for the number of subgroups of A with a given isomorphism type. See [1] and [2].

References