Fix a prime \(p \). For nonnegative integers \(a, b, \) and \(d \), we seek a formula for the number of subgroups of order \(p^d \) in \(\mathbb{Z}/p^a \mathbb{Z} \times \mathbb{Z}/p^b \mathbb{Z} \). Set

\[
N_{a,b,d} = \# \{ H \subset \mathbb{Z}/p^a \mathbb{Z} \times \mathbb{Z}/p^b \mathbb{Z} : \# H = p^d \}.
\]

This is symmetric in \(a \) and \(b \) (\(N_{a,b,d} = N_{b,a,d} \)), so when it is convenient we can limit attention to the case \(a \leq b \). Trivially \(N_{a,b,d} = 0 \) if \(d > a + b \), so we may assume \(0 \leq d \leq a + b \). For \(1 \leq a \leq b \), and \(a + b \geq d \), we will see that

\[
N_{a,b,d} = 1 + p + p^2 + \cdots + p^r,
\]

where \(r = r(a,b) \) is a somewhat irregular function of \(a \) and \(b \) (the precise rule is given in Theorem 3).

Throughout, we write

\[
G_{a,b} = \mathbb{Z}/p^a \mathbb{Z} \times \mathbb{Z}/p^b \mathbb{Z}.
\]

For any abelian group \(G \), its \(m \)-torsion subgroup will be denoted \(G[m] = \{ g \in G : g^m = e \} \).

We will develop a recursive formula for \(N_{a,b,d} \) that requires knowing in advance how many cyclic subgroups there are of each size in \(\mathbb{Z}/p^a \mathbb{Z} \times \mathbb{Z}/p^b \mathbb{Z} \). So first we work out a formula for the number of cyclic subgroups. Write it as

\[
C_{a,b,d} = \# \{ H \subset \mathbb{Z}/p^a \mathbb{Z} \times \mathbb{Z}/p^b \mathbb{Z} : \# H = p^d, H \text{ is cyclic} \}.
\]

Theorem 1. When \(1 \leq a \leq b \),

\[
C_{a,b,d} = \begin{cases}
1, & \text{if } d = 0, \\
p^d - 1 + p^d, & \text{if } 1 \leq d \leq a, \\
p^a, & \text{if } a + 1 \leq d \leq b \ (\text{if } a \neq b), \\
0, & \text{if } b < d.
\end{cases}
\]

In particular, \(C_{a,b,1} = 1 + p \).

Proof. The cases \(d = 0 \) and \(d > b \) are clear. So we may assume \(1 \leq d \leq b \). To count subgroups of order \(p^d \) we count elements of order \(p^d \) and then divide by \(\varphi(p^d) \) (the number of generators a cyclic group of order \(p^d \) has). An element has order \(p^d \) when it’s killed by \(p^d \) but not by \(p^{d-1} \), so

\[
C_{a,b,d} = \frac{\#G_{a,b}[p^d] - \#G_{a,b}[p^{d-1}]}{\varphi(p^d)}.
\]

How large is \(G_{a,b}[p^i] \)? If \(0 \leq i \leq a \),

\[
G_{a,b}[p^i] = \mathbb{Z}/p^a \mathbb{Z} \times p^{b-i} \mathbb{Z}/p^b \mathbb{Z} \implies \text{size is } p^{2i}.
\]

If \(a \leq i \leq b \),

\[
G_{a,b}[p^i] = \mathbb{Z}/p^a \mathbb{Z} \times p^{b-i} \mathbb{Z}/p^b \mathbb{Z} \implies \text{size is } p^{a+i}.
\]

If \(i > b \),

\[
G_{a,b}[p^i] = \mathbb{Z}/p^a \mathbb{Z} \times \mathbb{Z}/p^b \mathbb{Z} \implies \text{size is } p^{a+b}.
\]
Putting this all together,
\[\#G_{a,b}[p^i] = \begin{cases} p^{2i}, & \text{if } 0 \leq i \leq a, \\ p^{a+i}, & \text{if } a \leq i \leq b, \\ p^{a+b}, & \text{if } i \geq b. \end{cases} \]
(The overlapping cases are consistent at \(i = a \) and \(i = b \).

Now we feed the above formula for \(\#G_{a,b}[p^i] \) at \(i = d \) and \(i = d - 1 \) into the formula for \(C_{a,b,d} \). If \(1 \leq d \leq a \),
\[C_{a,b,d} = \frac{p^{2d} - p^{2(d-1)}}{p^{d-1}(p-1)} = \frac{p^{2d-2}(p^2 - 1)}{p^{d-1}(p-1)} = p^{d-1}(p + 1) = p^{d-1} + p^d. \]
If \(a < b \) and \(a + 1 \leq d \leq b \),
\[C_{a,b,d} = \frac{p^{a+d} - p^{a+d-1}}{p^{d-1}(p-1)} = \frac{p^{a+d-1}(p - 1)}{p^{d-1}(p-1)} = p^a. \]

Theorem 2. For \(1 \leq a \leq b \), we have
\[N_{a,b,0} = 1 \]
and
\[N_{a,b,1} = C_{a,b,1} = 1 + p. \]
If \(d \geq 2 \) then
\[N_{a,b,d} = C_{a,b,d} + N_{a-1,b-1,d-2}. \]

Proof. A group of order \(p \) is cyclic, so
\[N_{a,b,1} = C_{a,b,1} = 1 + p. \]
Now take \(d \geq 2 \). We can distinguish cyclic from noncyclic subgroups of \(G_{a,b} \) using \(p \)-torsion.
The \(p \)-torsion in \(G_{a,b} \) is
\[G_{a,b}[p] = p^{a-1}Z/p^aZ \times p^{b-1}Z/p^bZ, \]
which has order \(p^2 \), so
\[G_{a,b}/G_{a,b}[p] \cong Z/p^aZ \times Z/p^bZ \cong G_{a-1,b-1}. \]
For any nontrivial subgroup \(H \subset G_{a,b} \), if \(H \) is cyclic then \(H[p] \) has order \(p \), while if \(H \) is noncyclic then \(H \cong Z/p^jZ \times Z/p^kZ \) for some positive integers \(j \) and \(k \), so \(H[p] \) has order \(p^2 \). Since \(H[p] \subset G_{a,b}[p] \) and \(G_{a,b}[p] \) has order \(p^2 \), \(H[p] = G_{a,b}[p] \). So
\[H \text{ not cyclic} \Rightarrow G_{a,b}[p] \subset H \subset G_{a,b}. \]
The converse is true as well, since \(G_{a,b}[p] \cong (Z/pZ)^2 \) contains more than one subgroup of order \(p \), so it can’t lie inside a cyclic group. So for \(2 \leq d \leq a + b \),
\[\#\{H \subset G_{a,b} : \#H = p^d, H \text{ not cyclic}\} = \#\{\overline{H} \subset G_{a,b}/G_{a,b}[p] : \#\overline{H} = p^{d-2}\} = N_{a-1,b-1,d-2}, \]
which leads to a recursive formula: \(N_{a,b,d} \) is the number of cyclic subgroups of \(G_{a,b} \) with order \(p^d \) (which is \(C_{a,b,d} \)) plus the number of noncyclic subgroups of \(G_{a,b} \) with order \(p^d \) (which we just showed is \(N_{a-1,b-1,d-2} \) if \(d \geq 2 \)).
Using Theorems 1 and 2 (and sometimes the equation $N_{a,b,d} = N_{a,b,a+b-d}$, which follows from duality theory for finite abelian groups), the following formulas for $N_{a,b,d}$ are found when $1 \leq a \leq b$ and $1 \leq d \leq 5$:

$$N_{a,b,1} = 1 + p,$$

$$N_{a,b,2} = \begin{cases}
1, & \text{if } a = b = 1, \\
1 + p, & \text{if } a = 1, b \geq 2, \\
1 + p + p^2, & \text{if } a \geq 2,
\end{cases}$$

$$N_{a,b,3} = \begin{cases}
1, & \text{if } a = 1, b = 2, \\
1 + p, & \text{if } a = 1, b \geq 3; a = 2, b = 2, \\
1 + p + p^2, & \text{if } a = 2, b \geq 3, \\
1 + p + p^2 + p^3, & \text{if } a \geq 3,
\end{cases}$$

$$N_{a,b,4} = \begin{cases}
1, & \text{if } a = 1, b = 3; a = 2, b = 2, \\
1 + p, & \text{if } a = 1, b \geq 4; a = 2, b = 3, \\
1 + p + p^2, & \text{if } a = 2, b \geq 4; a = 3, b = 3, \\
1 + p + p^2 + p^3, & \text{if } a = 3, b \geq 4, \\
1 + p + p^2 + p^3 + p^4, & \text{if } a \geq 4,
\end{cases}$$

and

$$N_{a,b,5} = \begin{cases}
1, & \text{if } a = 1, b = 4; a = 2, b = 3, \\
1 + p, & \text{if } a = 1, b \geq 5; a = 2, b = 4; a = 3, b = 3, \\
1 + p + p^2, & \text{if } a = 2, b \geq 5; a = 3, b = 4, \\
1 + p + p^2 + p^3, & \text{if } a = 3, b \geq 5; a = 4, b = 4, \\
1 + p + p^2 + p^3 + p^4, & \text{if } a = 4, b \geq 5, \\
1 + p + p^2 + p^3 + p^4 + p^5, & \text{if } a \geq 5.
\end{cases}$$

Examine these according to the constraints on a and b for each formula for $N_{a,b,d}$. The pattern of cases where inequalities on b appear is obvious: $a = 1, b \geq d$, then $a = 2, b \geq d$, then $a = 3, b \geq d$, and so on as a increases up to $d - 1$. The remaining cases where a and b both have specified values are organized according to increasing values of $a + b$ for $1 \leq a \leq b \leq d - 1$. We are led to the following general theorem.

Theorem 3. If $1 \leq a \leq b$, then

$$N_{a,b,d} = \begin{cases}
1 + p + \cdots + p^d, & \text{if } 0 \leq d \leq a, \\
1 + p + \cdots + p^a, & \text{if } a \leq d \leq b, \\
1 + p + \cdots + p^{a+b-d}, & \text{if } b \leq d \leq a + b, \\
0, & \text{if } a + b < d.
\end{cases}$$

Therefore when $0 \leq d \leq a + b$, $N_{a,b,d} = 1 + p + \cdots + p^r$ where $0 \leq r \leq d$.

Proof. Use induction on b. \hfill \square

Example 4. When $a = b$,

$$N_{a,a,d} = \begin{cases}
1 + p + \cdots + p^d, & \text{if } 0 \leq d \leq a, \\
1 + p + \cdots + p^{2a-d}, & \text{if } a \leq d \leq 2a.
\end{cases}$$
Theorem 3 says that as \(d \) increases from 0 to \(a+b \), \(N_{a,b,d} \) starts out as 1, \(1+p \), \(1+p+p^2 \), \ldots, increasing by the next power of \(p \) each time until reaching \(1+p+\cdots+p^a \) at \(d = a \). Then \(N_{a,b,d} \) stays at this value until \(d \) reaches \(b \), after which the highest power of \(p \) is removed for each successive value of \(d \) until \(N_{a,b,d} \) reaches \(N_{a,b,a+b} = 1 \).

Corollary 5. Suppose \(1 \leq a \leq b \).

1. If \(1 \leq d \leq a \) then \(N_{a,b,d} = N_{a,b,d-1} + p^d \).
2. If \(a < d \leq b \) then \(N_{a,b,d} = N_{a,b,d-1} \).
3. If \(b < d \leq a+b \) then \(N_{a,b,d} = N_{a,b,d-1} - p^{a+b-d+1} \).

In particular, \(N_{a,b,d} \equiv N_{a,b,d-1} \mod p^d \) if \(1 \leq d \leq b \) but not necessarily if \(b < d \leq a+b \).

Proof. From the description of how \(N_{a,b,d} \) rises, plateaus, and then falls, this is obvious. \(\square \)

For each \(a \), \(b \), and \(d \), observe that \(N_{a,b,d} \) has the same formula for all \(p \). So \(N_{a,b,d} \) can be described by a “universal” formula for all primes. More generally, if \(A \) is a finite abelian \(p \)-group that is a product of cyclic groups of orders \(p^{e_1}, \ldots, p^{e_r} \) \((e_i > 0 \)) then the number of subgroups of \(A \) with a particular order \(p^d \) is a universal polynomial function of \(p \) (same formula for all \(p \)) that is determined by \(d \) and the exponents \(e_i \). Even more generally, the number of subgroups \(H \) of \(A \) such that \(H \) and \(A/H \) have specified cyclic decompositions is given by a universal polynomial in \(p \) that is determined by the sizes of the cyclic components of \(H \), \(A/H \), and \(A \); these universal polynomials in \(p \) are called Hall polynomials. There is also a formula, due to Delsarte, for the number of subgroups of \(A \) with a given isomorphism type. See [1] and [2].

References
