COUNTING SUBGROUPS OF $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$

KEITH CONRAD

Fix a prime p. For nonnegative integers a, b, and d, we seek a formula for the number of subgroups of order p^d in $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$. Set

$$N_{a,b,d} = \#\{H \subset \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z} : \#H = p^d\}.$$

This is symmetric in a and b ($N_{a,b,d} = N_{b,a,d}$), so when it is convenient we can limit attention to the case $a \leq b$. Trivially $N_{a,b,d} = 0$ if $d > a + b$, so we may assume $0 \leq d \leq a + b$. For $1 \leq a \leq b$, and $a + b \geq d$, we will see that

$$N_{a,b,d} = 1 + p + p^2 + \cdots + p^r,$$

where $r = r(a,b)$ is a somewhat irregular function of a and b (the precise rule is given in Theorem 3).

Throughout, we write

$$G_{a,b} = \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}.$$

For any abelian group G, its m-torsion subgroup will be denoted $G[m] = \{g \in G : g^m = e\}$.

We will develop a recursive formula for $N_{a,b,d}$ that requires knowing in advance how many cyclic subgroups there are of each size in $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$. So first we work out a formula for the number of cyclic subgroups. Write it as

$$C_{a,b,d} = \#\{H \subset \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z} : \#H = p^d, H \text{ is cyclic}\}.$$

Theorem 1. When $1 \leq a \leq b$,

$$C_{a,b,d} = \begin{cases} 1, & \text{if } d = 0, \\ p^{d-1} + p^d, & \text{if } 1 \leq d \leq a, \\ p^a, & \text{if } a + 1 \leq d \leq b \ (\text{if } a \neq b), \\ 0, & \text{if } b < d. \end{cases}$$

In particular, $C_{a,b,1} = 1 + p$.

Proof. The cases $d = 0$ and $d > b$ are clear. So we may assume $1 \leq d \leq b$. To count subgroups of order p^d we count elements of order p^d and then divide by $\varphi(p^d)$ (the number of generators a cyclic group of order p^d has). An element has order p^d when it’s killed by p^d but not by p^{d-1}, so

$$C_{a,b,d} = \frac{\#G_{a,b}[p^d] - \#G_{a,b}[p^{d-1}]}{\varphi(p^d)}.$$

How large is $G_{a,b}[p^i]$? If $0 \leq i \leq a$,

$$G_{a,b}[p^i] = \mathbb{Z}/p^a\mathbb{Z} \times p^{-i}\mathbb{Z}/p^b\mathbb{Z} \implies \text{size is } p^{2i}.$$

If $a \leq i \leq b$,

$$G_{a,b}[p^i] = \mathbb{Z}/p^a\mathbb{Z} \times p^{-i}\mathbb{Z}/p^b\mathbb{Z} \implies \text{size is } p^{a+i}.$$

If $i > b$,

$$G_{a,b}[p^i] = \mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z} \implies \text{size is } p^{a+b}.$$
Putting this all together,

\[
\#G_{a,b}\[p^i\] = \begin{cases}
 p^{2i}, & \text{if } 0 \leq i \leq a, \\
 p^{a+i}, & \text{if } a \leq i \leq b, \\
 p^{a+b}, & \text{if } i \geq b.
\end{cases}
\]

(The overlapping cases are consistent at \(i = a\) and \(i = b\).

Now we feed the above formula for \(\#G_{a,b}\[p^i\]\) at \(i = d\) and \(i = d - 1\) into the formula for \(C_{a,b,d}\). If \(1 \leq d \leq a\),

\[
C_{a,b,d} = \frac{p^{2d} - p^{2(d-1)}}{p^{d-1}(p - 1)} = \frac{p^{2d-2}(p^2 - 1)}{p^{d-1}(p - 1)} = p^{d-1}(p + 1) = p^{d-1} + p^d.
\]

If \(a < b\) and \(a + 1 \leq d \leq b\),

\[
C_{a,b,d} = \frac{p^{a+d} - p^{a+d-1}}{p^{d-1}(p - 1)} = \frac{p^{a+d-1}(p - 1)}{p^{d-1}(p - 1)} = p^a.
\]

\[
\square
\]

Theorem 2. For \(1 \leq a \leq b\), we have

\[
N_{a,b,0} = 1
\]

and

\[
N_{a,b,1} = C_{a,b,1} = 1 + p.
\]

If \(d \geq 2\) then

\[
N_{a,b,d} = C_{a,b,d} + N_{a-1,b-1,d-2}.
\]

Proof. A group of order \(p\) is cyclic, so

\[
N_{a,b,1} = C_{a,b,1} = 1 + p.
\]

Now take \(d \geq 2\). We can distinguish cyclic from noncyclic subgroups of \(G_{a,b}\) using \(p\)-torsion. The \(p\)-torsion in \(G_{a,b}\) is

\[
G_{a,b}[p] = p^{a-1}Z/p^aZ \times p^{b-1}Z/p^bZ,
\]

which has order \(p^2\), so

\[
G_{a,b}/G_{a,b}[p] \cong Z/p^{a-1}Z \times Z/p^{b-1}Z \cong G_{a-1,b-1}.
\]

For any nontrivial subgroup \(H \subset G_{a,b}\), if \(H\) is cyclic then \(H[p]\) has order \(p\), while if \(H\) is noncyclic then \(H \cong Z/p^jZ \times Z/p^kZ\) for some positive integers \(j\) and \(k\), so \(H[p]\) has order \(p^2\). Since \(H[p] \subset G_{a,b}[p]\) and \(G_{a,b}[p]\) has order \(p^2\), \(H[p] = G_{a,b}[p]\). So

\[
H \text{ not cyclic } \implies G_{a,b}[p] \subset H \subset G_{a,b}.
\]

The converse is true as well, since \(G_{a,b}[p] \cong (Z/pZ)^2\) contains more than one subgroup of order \(p\), so it can’t lie inside a cyclic group. So for \(2 \leq d \leq a + b\),

\[
\#\{H \subset G_{a,b} : \#H = p^d, H \text{ not cyclic}\} = \#\{\overline{H} \subset G_{a,b}/G_{a,b}[p] : \#\overline{H} = p^{d-2}\}
\]

\[
= N_{a-1,b-1,d-2}.
\]

which leads to a recursive formula: \(N_{a,b,d}\) is the number of cyclic subgroups of \(G_{a,b}\) with order \(p^d\) (which is \(C_{a,b,d}\)) plus the number of noncyclic subgroups of \(G_{a,b}\) with order \(p^d\) (which we just showed is \(N_{a-1,b-1,d-2}\) if \(d \geq 2\)).

\[
\square
\]
Using Theorems 1 and 2 (and sometimes the equation $N_{a,b,d} = N_{a,b,a+b-d}$, which follows from duality theory for finite abelian groups), the following formulas for $N_{a,b,d}$ are found when $1 \leq a \leq b$ and $1 \leq d \leq 5$:

$$N_{a,b,1} = 1 + p,$$

$$N_{a,b,2} = \begin{cases}
1, & \text{if } a = b = 1, \\
1 + p, & \text{if } a = 1, b \geq 2, \\
1 + p + p^2, & \text{if } a \geq 2,
\end{cases}$$

$$N_{a,b,3} = \begin{cases}
1, & \text{if } a = 1, b = 2, \\
1 + p, & \text{if } a = 1, b \geq 3; a = 2, b = 2, \\
1 + p + p^2, & \text{if } a = 2, b \geq 3, \\
1 + p + p^2 + p^3, & \text{if } a \geq 3,
\end{cases}$$

$$N_{a,b,4} = \begin{cases}
1, & \text{if } a = 1, b = 3; a = 2, b = 2, \\
1 + p, & \text{if } a = 1, b \geq 4; a = 2, b = 3, \\
1 + p + p^2, & \text{if } a = 2, b \geq 4; a = 3, b = 3, \\
1 + p + p^2 + p^3, & \text{if } a = 3, b \geq 4, \\
1 + p + p^2 + p^3 + p^4, & \text{if } a \geq 4,
\end{cases}$$

and

$$N_{a,b,5} = \begin{cases}
1, & \text{if } a = 1, b = 4; a = 2, b = 3, \\
1 + p, & \text{if } a = 1, b \geq 5; a = 2, b = 4; a = 3, b = 3, \\
1 + p + p^2, & \text{if } a = 2, b \geq 5; a = 3, b = 4, \\
1 + p + p^2 + p^3, & \text{if } a = 3, b \geq 5; a = 4, b = 4, \\
1 + p + p^2 + p^3 + p^4, & \text{if } a = 4, b \geq 5, \\
1 + p + p^2 + p^3 + p^4 + p^5, & \text{if } a \geq 5.
\end{cases}$$

Examine these according to the constraints on a and b for each formula for $N_{a,b,d}$. The pattern of cases where inequalities on b appear is obvious: $a = 1, b \geq d$, then $a = 2, b \geq d$, then $a = 3, b \geq d$, and so on as a increases up to $d - 1$. The remaining cases where a and b both have specified values are organized according to increasing values of $a + b$ for $1 \leq a \leq b \leq d - 1$. We are led to the following general theorem.

Theorem 3. If $1 \leq a \leq b$, then

$$N_{a,b,d} = \begin{cases}
1 + p + \cdots + p^d, & \text{if } 0 \leq d \leq a, \\
1 + p + \cdots + p^a, & \text{if } a \leq d \leq b, \\
1 + p + \cdots + p^{a+b-d}, & \text{if } b \leq d \leq a + b, \\
0, & \text{if } a + b < d.
\end{cases}$$

Therefore when $0 \leq d \leq a + b$, $N_{a,b,d} = 1 + p + \cdots + p^r$ where $0 \leq r \leq d$.

Proof. Use induction on b. \qed

Example 4. When $a = b$,

$$N_{a,a,d} = \begin{cases}
1 + p + \cdots + p^d, & \text{if } 0 \leq d \leq a, \\
1 + p + \cdots + p^{2a-d}, & \text{if } a \leq d \leq 2a.
\end{cases}$$
Theorem 3 says that as d increases from 0 to $a+b$, $N_{a,b,d}$ starts out as $1, 1+p, 1+p+p^2, \ldots$, increasing by the next power of p each time until reaching $1 + p + \cdots + p^a$ at $d = a$. Then $N_{a,b,d}$ stays at this value until d reaches b, after which the highest power of p is removed for each successive value of d until $N_{a,b,d}$ reaches $N_{a,b,a+b} = 1$.

Corollary 5. Suppose $1 \leq a \leq b$.

1. If $1 \leq d \leq a$ then $N_{a,b,d} = N_{a,b,d-1} + p^d$.
2. If $a < d \leq b$ then $N_{a,b,d} = N_{a,b,d-1}$.
3. If $b < d \leq a + b$ then $N_{a,b,d} = N_{a,b,d-1} - p^{a-b-d+1}$.

In particular, $N_{a,b,d} \equiv N_{a,b,d-1} \mod p^d$ if $1 \leq d \leq b$ but not necessarily if $b < d \leq a + b$.

Proof. From the description of how $N_{a,b,d}$ rises, plateaus, and then falls, this is obvious. \[\square\]

For each a, b, and d, observe that $N_{a,b,d}$ has the same formula for all p. So $N_{a,b,d}$ can be described by a “universal” formula for all primes. More generally, if A is a finite abelian p-group that is a product of cyclic groups of orders p^{e_1}, \ldots, p^{e_r} ($e_i > 0$), then the number of subgroups of A with a particular order p^d is a universal polynomial function of p (same formula for all p) that is determined by d and the exponents e_i. Even more generally, the number of subgroups H of A such that H and A/H have specified cyclic decompositions is given by a universal polynomial in p that is determined by the sizes of the cyclic components of H, A/H, and A; these universal polynomials in p are called Hall polynomials. There is also a formula, due to Delsarte, for the number of subgroups of A with a given isomorphism type. See [1] and [2].

References
