The converse of Lagrange’s theorem is false in general: when \(d \mid \#G \), \(G \) doesn’t have to contain a subgroup of size \(d \). There is a converse when \(d \) is prime. This is Cauchy’s theorem.

Theorem. (Cauchy 1845) Let \(G \) be a finite group and \(p \) be a prime factor of \(\#G \). Then \(G \) contains an element of order \(p \). Equivalently, \(G \) contains a subgroup of size \(p \).

The equivalence of the existence of an element of order \(p \) and a subgroup of size \(p \) is easy: an element of order \(p \) generates a subgroup of size \(p \), while conversely any nonidentity element of a subgroup of order \(p \) has order \(p \) because \(p \) is prime.

Before treating Cauchy’s theorem, let’s see that the special case for \(p = 2 \) can be proved in a simple way. If \(\#G \) is even, consider the set of pairs \(\{g, g^{-1}\} \), where \(g \neq g^{-1} \). This takes into account an even number of elements of \(G \). Those \(g \)'s that are not part of such a pair are the ones satisfying \(g = g^{-1} \), i.e., \(g^2 = e \). Therefore if we count \(\#G \) mod 2, we can ignore the pairs \(\{g, g^{-1}\} \) where \(g \neq g^{-1} \) and we obtain \(\#G \equiv \#\{g \in G : g^2 = e\} \) mod 2. One solution to \(g^2 = e \) is \(e \). If it were the only solution, then \(\#G \equiv 1 \mod 2 \), which is false. Therefore some \(g_0 \neq e \) satisfies \(g_0^2 = e \), which gives us an element of order 2.

Now we prove Cauchy’s theorem.

Proof. We will use induction on \(\#G \).\(^1\) Let \(n = \#G \). Since \(p \mid n \), \(n \geq p \). The base case is \(n = p \). When \(\#G = p \), any nonidentity element of \(G \) has order \(p \) because \(p \) is prime. Now suppose \(n > p \), \(p \mid n \), and the theorem is true for all groups or order less than \(n \) that is divisible by \(p \). We will treat separately abelian \(G \) (using homomorphisms) and nonabelian \(G \) (using conjugacy classes).

Case 1: \(G \) is abelian. Assume no element of \(G \) has order \(p \). Then no element has order divisible by \(p \): if \(g \in G \) has order \(r \) and \(p \mid r \) then \(g^{r/p} \) would have order \(p \).

Let \(G = \{g_1, g_2, \ldots, g_n\} \) and let \(g_i \) have order \(m_i \), so \(m_i \) is not divisible by \(p \). Set \(m \) to be the least common multiple of the \(m_i \)'s, so \(m \) is not divisible by \(p \) and \(g_i^{m_i} = e \) for all \(i \).

Because \(G \) is abelian, the function \(f: (\mathbb{Z}/(m))^n \rightarrow G \) given by \(f(\bar{a}_1, \ldots, \bar{a}_n) = g_1^{a_1} \cdots g_n^{a_n} \) is a homomorphism:\(^2\)

\[
f(\bar{a}_1, \ldots, \bar{a}_n)f(\bar{b}_1, \ldots, \bar{b}_n) = f(\bar{a}_1 + \bar{b}_1, \ldots, \bar{a}_n + \bar{b}_n).
\]

That is,

\[
g_1^{a_1} \cdots g_n^{a_n} g_1^{b_1} \cdots g_n^{b_n} = g_1^{a_1 + b_1} \cdots g_n^{a_n + b_n}
\]

from commutativity of the \(g_i \)'s. This homomorphism is surjective (each element of \(G \) is a \(g_i \), and if \(a_i = 1 \) and other \(a_j \)'s are 0 then \(f(\bar{a}_1, \ldots, \bar{a}_n) = g_i \)) and the elements where \(f \) takes on each value is a coset of \(\ker f \), so

\[
\#G = \text{number of cosets of } \ker f = \text{factor of } \#(\mathbb{Z}/(m))^n = \text{factor of } m^n.
\]

\(^1\)Proving a theorem on groups by induction on the size of the group is a very fruitful idea in group theory.

\(^2\)This function is well-defined because \(g_i^m = e \) for all \(i \), so \(g_i^{a + mk} = g_i^a \) for any \(k \in \mathbb{Z} \).
But \(p \) divides \(\#G \) and \(m^n \) is not divisible by \(p \), so we have a contradiction.

Case 2: G is nonabelian.

If a proper subgroup \(H \) of \(G \) has order divisible by \(p \), then by induction there is an element of order \(p \) in \(H \), which gives us an element of order \(p \) in \(G \). Thus we may assume no proper subgroup of \(G \) has order divisible by \(p \). For any proper subgroup \(H \), \(\#G = (\#H)[G : H] \) and \(\#H \) is not divisible by \(p \), so \(p \mid [G : H] \) for every proper subgroup \(H \).

Let the conjugacy classes in \(G \) with size greater than 1 be represented by \(g_1, g_2, \ldots, g_k \). The conjugacy classes of size 1 are the elements in \(Z(G) \). Since the conjugacy classes are a partition of \(G \), counting \(\#G \) by counting conjugacy classes implies

\[
\#G = \#Z(G) + \sum_{i=1}^{k} \text{(size of conj. class of } g_i) = \#Z(G) + \sum_{i=1}^{k} [G : Z(g_i)],
\]

where \(Z(g_i) \) is the centralizer of \(g_i \). Since the conjugacy class of each \(g_i \) has size greater than 1, \([G : Z(g_i)] > 1 \), so \(Z(g_i) \neq G \). Therefore \(p \mid [G : Z(g_i)] \). In (1), the left side is divisible by \(p \) and each index in the sum on the right side is divisible by \(p \), so \(\#Z(G) \) is divisible by \(p \). Since proper subgroups of \(G \) don’t have order divisible by \(p \), \(Z(G) \) has to be all of \(G \). That means \(G \) is abelian, which is a contradiction. \(\square \)

It is worthwhile reading and re-reading this proof until you see how it hangs together. For instance, notice that we did not need the nonabelian case to treat the abelian case. In fact, quite a few books prove Cauchy’s theorem for abelian groups before they develop suitable material (like conjugacy classes) to handle Cauchy’s theorem for nonabelian groups.