SIMPLICITY OF A_n

KEITH CONRAD

1. Introduction

A finite group is called simple when it is nontrivial and its only normal subgroups are the trivial subgroup and the whole group.

For instance, a finite group of prime size is simple, since it in fact has no non-trivial proper subgroups at all (normal or not). A finite abelian group G not of prime size, is not simple: let p be a prime factor of $|G|$, so G contains a subgroup of order p, which is a normal since G is abelian and is proper since $|G| > p$. Thus, the abelian finite simple groups are the groups of prime size.

When $n \geq 3$ the group S_n is not simple because it has a nontrivial normal subgroup A_n. But the groups A_n are simple, provided $n \geq 5$.

Theorem 1.1 (C. Jordan, 1875). For $n \geq 5$, the group A_n is simple.

The restriction $n \geq 5$ is optimal, since A_4 is not simple: it has a normal subgroup of size 4, namely $\{(1), (12)(34), (13)(24), (14)(23)\}$. The group A_3 is simple, since it has size 3, and the groups A_1 and A_2 are trivial.

We will give five proofs of Theorem 1.1. Section 2 includes some preparatory material and later sections give the proofs of Theorem 1.1. In the final section, we give a quick application of the simplicity of alternating groups and give references for further proofs not treated here.

2. Preliminaries

We give two lemmas about alternating groups A_n for $n \geq 5$ and then two results on symmetric groups S_n for $n \geq 5$.

Lemma 2.1. For $n \geq 3$, A_n is generated by 3-cycles. For $n \geq 5$, A_n is generated by permutations of type $(2,2)$.

Proof. That the 3-cycles generate A_n for $n \geq 3$ has been seen earlier in the course. To show permutations of type $(2,2)$ generate A_n for $n \geq 5$, it suffices to write any 3-cycle (abc) in terms of such permutations. Pick $d, e \not\in \{a, b, c\}$. Then note

$$(abc) = (ab)(de)(de)(bc).$$

The 3-cycles in S_n are all conjugate in S_n, since permutations of the same cycle type in S_n are conjugate. Are 3-cycles conjugate in A_n? Not when $n = 4$: (123) and (132) are not conjugate in A_4. But for $n \geq 5$ we do have conjugacy in A_n.

Lemma 2.2. For $n \geq 5$, any two 3-cycles in A_n are conjugate in A_n.

We show every 3-cycle in A_n is conjugate within A_n to (123). Let σ be a 3-cycle in A_n. It can be conjugated to (123) in S_n:

$$(123) = \pi \sigma \pi^{-1}$$

for some $\pi \in S_n$. If $\pi \in A_n$ we’re done. Otherwise, let $\pi' = (45)\pi$, so $\pi' \in A_n$ and

$$\pi' \sigma \pi'^{-1} = (45)\pi \sigma \pi^{-1}(45) = (45)(123)(45) = (123).$$

\[
\]

\[\]

Example 2.3. The 3-cycles (123) and (132) are not conjugate in A_4. But in A_5 we have

$$(132) = \pi(123)\pi^{-1}$$

for $\pi = (45)(12) \in A_5$.

Most proofs of the simplicity of the groups A_n are based on Lemmas 2.1 and 2.2. The basic argument is this: show any non-trivial normal subgroup $N \triangleleft A_n$ contains a 3-cycle, so N contains every 3-cycle by Lemma 2.2, and therefore N is A_n by Lemma 2.1.

The next lemma will be used in our fifth proof of the simplicity of alternating groups.

Lemma 2.4. For $n \geq 5$, the only nontrivial proper normal subgroup of S_n is A_n. In particular, the only subgroup of S_n with index 2 is A_n.

Proof. The last statement follows from the first since any subgroup of index 2 is normal.

Let $N \triangleleft S_n$ with $N \neq \{1\}$. We will show $A_n \subset N$, so $N = A_n$ or S_n.

Pick $\sigma \in N$ with $\sigma \neq (1)$. That means there is an i with $\sigma(i) \neq i$. Pick $j \in \{1, 2, \ldots, n\}$ so $j \neq i$ and $j \neq \sigma(i)$. Let $\tau = (ij)$. Then

$$\sigma \tau \sigma^{-1} \tau^{-1} = (\sigma(i) \sigma(j))(ij).$$

Since $\sigma(i) \neq i$ or j and $\sigma(i) \neq \sigma(j)$ (why?), the 2-cycles $(\sigma(i) \sigma(j))$ and (ij) are unequal, so their product is not the identity. That shows $\sigma \tau \neq \tau \sigma$.

Since $N \triangleleft S_n$, $\sigma \tau \sigma^{-1} \tau^{-1}$ lies in N. By construction, $\sigma(i) \neq i$ or j. If $\sigma(j) \neq i$ or j, then $(\sigma(i) \sigma(j))(ij)$ has type $(2, 2)$. If $\sigma(j) = i$ or j, $(\sigma(i) \sigma(j))(ij)$ is a 3-cycle. Thus N contains a permutation of type $(2, 2)$ or a 3-cycle. Since $N \triangleleft S_n$, N contains all permutations of type $(2, 2)$ or all 3-cycles. In either case, this shows (by Lemma 2.1) that $N \supset A_n$. \[\]

Remark 2.5. There is an analogue of Lemma 2.4 for the “countable” symmetric group S_∞ consisting of all permutations of $\{1, 2, 3, \ldots\}$. A theorem of Schreier and Ulam (1933) says the only nontrivial proper normal subgroups of S_∞ are $\cup_{n \geq 1} S_n$ and $\cup_{n \geq 1} A_n$, which are the subgroup of permutations fixing all but a finite number of terms and its subgroup of even permutations.

Remark 2.6. From Lemma 2.4, any homomorphic image of S_n which is not an isomorphism has size 1 or 2. In particular, there is no surjective homomorphism $S_n \rightarrow \mathbb{Z}/(m)$ for $m > 2$.

Theorem 2.7. For $n \geq 5$, any proper subgroup of S_n other than A_n has index at least n. Moreover, any subgroup of index n is isomorphic to S_{n-1}.

Proof. Let H be a proper subgroup of S_n other than A_n, and let $m > 1$ be the index of H in S_n. We want to show $m \geq n$. Assume $m < n$. The left multiplication action of S_n on S_n/H gives a group homomorphism

$$\varphi: S_n \rightarrow \text{Sym}(S_n/H) \cong S_m.$$
By hypothesis, $m < n$, so φ is not injective. Let K be the kernel of φ, so $K \subset H$ and K is non-trivial. Since $K \triangleleft S_n$, Lemma 2.4 says $K = A_n$ or S_n. Since $K \subset H$, we get $H = A_n$ or S_n, which contradicts our initial assumption about H. Therefore $m \geq n$.

Now let H be a subgroup of S_n with index n. Consider the left multiplication action of S_n on S_n/H. This is a homomorphism $\ell : S_n \to \text{Sym}(S_n/H)$. Since S_n/H has size n, $\text{Sym}(S_n/H)$ is isomorphic to S_n. The kernel of ℓ is a normal subgroup of S_n which lies in H (why?). Therefore the kernel has index at least n in S_n. Since the only normal subgroups of S_n are 1, A_n, and S_n, the kernel of ℓ is trivial, so ℓ is an isomorphism. What is the image $\ell(H)$ in $\text{Sym}(S_n/H)$? Since $gH = H$ if and only if $g \in H$, $\ell(H)$ is the group of permutations of S_n/H which fixes the “point” H in S_n/H. The subgroup fixing a point in a symmetric group isomorphic to S_n is isomorphic to S_{n-1}. Therefore $H \cong \ell(H) \cong S_{n-1}$. \hfill \Box

Theorem 2.7 is false for $n = 4$: S_4 contains the dihedral group of size 8 as a subgroup of index 3. An analogue of Theorem 2.7 for alternating groups will be given in Section 8; its proof uses the simplicity of alternating groups.

Corollary 2.8. Let F be a field. If $f \in F[X_1, \ldots, X_n]$ and $n \geq 5$, the number of different polynomials we get from f by permuting its variables is either 1, 2, or at least n.

Proof. Letting S_n act on $F[X_1, \ldots, X_n]$ by permutations of the variables, the polynomials we get by permuting the variables of f is the S_n-orbit of f. The size of this orbit is $|S_n : H|$, where $H = \text{Stab}_f = \{\sigma \in S_n : \sigma f = f\}$. By Theorem 2.7, this index is either 1, 2, or at least n. \hfill \Box

3. First proof

Our first proof of Theorem 1.1 is based on the one in [2, pp. 149–150].

We begin by showing A_5 is simple.

Theorem 3.1. The group A_5 is simple.

Proof. We want to show the only normal subgroups of A_5 are $\{(1)\}$ and A_5. This will be done in two ways.

Our first method involves counting the sizes of the conjugacy classes. There are 5 conjugacy classes in A_5, with representatives and sizes as indicated in the following table.

<table>
<thead>
<tr>
<th>Rep.</th>
<th>(1)</th>
<th>(12345)</th>
<th>(21345)</th>
<th>(12)(34)</th>
<th>(123)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

If A_5 has a normal subgroup N, then N is a union of conjugacy classes – including $\{(1)\}$ – whose total size divides 60. However, no sum of the above numbers which includes 1 is a factor of 60 except for 1 and 60. Therefore N is trivial or A_5.

For the second proof, let $N \triangleleft A_5$ with $|N| > 1$. We will show N contains a 3-cycle. It follows that $N = A_n$ by Lemmas 2.1 and 2.2.

Pick $\sigma \in N$ with $\sigma \neq (1)$. The cycle structure of σ is $(abc), (ab)(cd)$, or $(abcde)$, where different letters represent different numbers. Since we want to show N contains a 3-cycle, we may suppose σ has the second or third cycle type. In the second case, N contains
\[
\]
In the third case, N contains
\[
((abc)(abcd(e)(abc)^{-1})(abcd)^{-1} = (adebc)(aeedcb) = (abd).
\]
Therefore N contains a 3-cycle, so $N = A_5$. \hfill \Box
Lemma 3.2. When \(n \geq 5 \), any \(\sigma \neq (1) \) in \(A_n \) has a conjugate \(\sigma' \neq \sigma \) such that \(\sigma(i) = \sigma'(i) \) for some \(i \).

For example, if \(\sigma = (12345) \) in \(A_5 \) then \(\sigma' = (345)\sigma(345)^{-1} = (12453) \) has the same value at \(i = 1 \) as \(\sigma \) does.

Proof. Let \(\sigma \) be a non-identity element of \(A_n \). Let \(r \) be the longest length of a disjoint cycle in \(\sigma \). Relabelling, we may write

\[
\sigma = (12 \ldots r)\pi,
\]

where \((12 \ldots r)\) and \(\pi \) are disjoint.

If \(r \geq 3 \), let \(\tau = (345) \) and \(\sigma' = \tau \sigma \tau^{-1} \). Then \(\sigma(1) = 2, \sigma'(1) = 2, \sigma(2) = 3, \) and \(\sigma'(2) = 4 \). Thus \(\sigma' \neq \sigma \) and both take the same value at 1.

If \(r = 2 \), then \(\sigma \) is a product of disjoint transpositions. If there are at least 3 disjoint transpositions involved, then \(n \geq 6 \) and we can write \(\sigma = (12)(34)(56)(\ldots) \) after relabelling.

Let \(\tau = (12)(35) \) and \(\sigma' = \tau \sigma \tau^{-1} \). Then \(\sigma(1) = 2, \sigma'(1) = 2, \sigma(3) = 4, \) and \(\sigma'(3) = 6 \). Again, we see \(\sigma' \neq \sigma \) and \(\sigma \) and \(\sigma' \) have the same value at 1.

If \(r = 2 \) and \(\sigma \) is a product of 2 disjoint transpositions, write \(\sigma = (12)(34) \) after relabelling.

Let \(\tau = (132) \) and \(\sigma' = \tau \sigma \tau^{-1} = (13)(24) \). Then \(\sigma' \neq \sigma \) and they both fix 5.

□

Now we prove Theorem 1.1.

Proof. We may suppose \(n \geq 6 \), by Theorem 3.1. For \(1 \leq i \leq n \), let \(A_n \) act in the natural way on \(\{1, 2, \ldots, n\} \) and let \(H_i \subset A_n \) be the subgroup fixing \(i \), so \(H_i \cong A_{n-1} \). By induction, each \(H_i \) is simple. Note each \(H_i \) contains a 3-cycle (build out of 3 numbers other than \(i \)).

Let \(N \triangleleft A_n \) be a nontrivial normal subgroup. We want to show \(N = A_n \). Pick \(\sigma \in N \) with \(\sigma \neq (1) \). By Lemma 3.2, there is a conjugate \(\sigma' \) of \(\sigma \) such that \(\sigma' \neq \sigma \) and \(\sigma(i) = \sigma'(i) \) for some \(i \). Since \(N \) is normal in \(A_n \), \(\sigma' \in N \). Then \(\sigma^{-1} \sigma' \) is a non-identity element of \(N \) which fixes \(i \), so \(N \cap H_i \) is a non-trivial subgroup of \(H_i \). It is also a normal subgroup of \(H_i \) since \(N \triangleleft A_n \). Since \(H_i \) is simple, \(N \cap H_i = H_i \). Therefore \(H_i \subset N \). Since \(H_i \) contains a 3-cycle, \(N \) contains a 3-cycle and we are done.

Alternatively, we can show \(N = A_n \) when \(N \cap H_i \) is non-trivial for some \(i \) as follows. As before, since \(N \cap H_i \) is a non-trivial normal subgroup of \(H_i \), \(H_i \subset N \). Without referring to 3-cycles, we instead note that the different \(H_i \)'s are conjugate subgroups of \(A_n \): \(\sigma H_i \sigma^{-1} = H_{\sigma(i)} \) for \(\sigma \in A_n \). Since \(N \triangleleft A_n \) and \(N \) contains \(H_i \), \(N \) contains every \(H_{\sigma(i)} \) for all \(\sigma \in A_n \). Since \(\sigma(i) \) can be any element of \(A_n \) as \(\sigma \) varies in \(A_n \), \(N \) contains every \(H_i \). Any permutation of type \((2, 2)\) is in some \(H_i \) since \(n \geq 5 \), so \(N \) contains all permutations of type \((2, 2)\). Every permutation in \(A_n \) is a product of permutations of type \((2, 2)\), so \(N \supset A_n \). Therefore \(N = A_n \). □

4. Second proof

Our next proof is taken from [6, p. 108]. It does not use induction on \(n \), but we do need to know \(A_6 \) is simple at the start.

Theorem 4.1. The group \(A_6 \) is simple.

Proof. We follow the first method of proof of Theorem 3.1. Here is the table of conjugacy classes in \(A_6 \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>72</td>
<td>72</td>
<td>90</td>
</tr>
</tbody>
</table>

A tedious check shows no sum of these sizes, which includes 1, is a factor of $6!/2$ except for the sum of all the terms. Therefore the only non-trivial normal subgroup of A_6 is A_6. □

Now we prove the simplicity of A_n for larger n by reducing directly to the case of A_6.

Proof. Since A_5 and A_6 are known to be simple by Theorems 3.1 and 4.1, pick $n \geq 7$ and let $N \trianglelefteq A_n$ be a non-trivial subgroup. We will show N contains a 3-cycle.

Let σ be a non-identity element of N. It moves some number. By relabelling, we may suppose $\sigma(1) \neq 1$. Let $\tau = (ijk)$, where i,j,k are not 1 and $\sigma(1) \in \{i,j,k\}$. Then $\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1)$, so $\tau \sigma \tau^{-1} \neq \sigma$. Let $\varphi = \tau \sigma \tau^{-1} \sigma^{-1}$, so $\varphi \neq (1)$. Writing $\varphi = (\tau \sigma \tau^{-1}) \sigma^{-1}$, we see $\varphi \in N$. Now write

$$\varphi = \tau(\sigma \tau^{-1} \sigma^{-1}),$$

Since τ^{-1} is a 3-cycle, $\sigma \tau^{-1} \sigma^{-1}$ is also a 3-cycle. Therefore φ is a product of two 3-cycles, so φ moves at most 6 numbers in $\{1, 2, \ldots, n\}$. Let H be the copy of A_6 inside A_n corresponding to the even permutations of those 6 numbers (possibly augmented to 6 arbitrarily if in fact φ moves fewer numbers). Then $N \cap H$ is non-trivial (it contains φ) and it is a normal subgroup of H. Since $H \cong A_6$, which is simple, $N \cap H = H$. Thus $H \subset N$, so N contains a 3-cycle. □

5. Third proof

Our next proof is by induction, and uses conjugacy classes instead of Lemma 3.2. It is based on [9, §2.3].

Lemma 5.1. If $n \geq 6$ then every non-trivial conjugacy class in S_n and A_n has at least n elements.

The lower bound n in Lemma 5.1 is actually quite weak as n grows. But it shows that the size of each non-trivial conjugacy class in S_n and A_n grows with n.

Proof. For $n \geq 6$, pick $\sigma \in S_n$ with $\sigma \neq (1)$. We want to look at the conjugacy class of σ in S_n, and if $\sigma \in A_n$ we also want to look at the conjugacy class of σ in A_n, and our goal in both cases is to find at least n elements in the conjugacy class.

Case 1: The disjoint cycle decomposition of σ includes a cycle with length greater than 2. Without loss of generality, $\sigma = (123\ldots)\ldots$

For $3 \leq k \leq n$, fix a choice of $\ell \not\in \{1,2,3,k\}$ (which is possible since $n \geq 5$) and let $\alpha_k = (2k\ell)$ and $\beta_k = (3k\ell)$. Then $\alpha_k \sigma \alpha_k^{-1}$ has the effect $1 \to 1 \to 2 \to k$ and $\beta_k \sigma \beta_k^{-1}$ has the effect $1 \to 1 \to 2 \to 2$ and $2 \to 2 \to 3 \to k$. This tells us that the conjugates $\alpha_3 \sigma \alpha_3^{-1}, \ldots, \alpha_n \sigma \alpha_n^{-1}, \beta_3 \sigma \beta_3^{-1}, \ldots, \beta_n \sigma \beta_n^{-1}$ are all different from each other: the conjugates by the α’s have different effects on 1, the conjugates by the β’s have different effects on 2, and a conjugate by an α is not a conjugate by a β since they have different effects on 1. Since these conjugates are different, the number of conjugates of σ is at least $2(n-2) > n$. Because α_k and β_k are 3-cycles, if $\sigma \in A_n$ then these conjugates are in the A_n-conjugacy class of σ.

Case 2: The disjoint cycle decomposition of σ only has cycles with length 1 or 2. Therefore without loss of generality σ is a transposition or a product of at least 2 disjoint transpositions.
If σ is a transposition, then its S_n-conjugacy class is the set of all transpositions (ij) where $1 \leq i < j \leq n$, and the number of these permutations is $\binom{n}{2} = \frac{n^2 - n}{2}$, which is greater than n for $n \geq 6$.

If σ is a product of at least 2 disjoint transpositions, then without loss of generality $\sigma = (12)(34) \ldots$, where the terms in \ldots don’t involve 1, 2, 3, or 4.

For $5 \leq k \leq n$, let $\alpha_k = (12)(3k)$, $\beta_k = (13)(2k)$, and $\gamma_k = (1k)(23)$. Then $\alpha_k \sigma \alpha_k^{-1}$ has the effect

$$1 \to 2 \to 1 \to 2, \quad 2 \to 1 \to 2 \to 1, \quad k \to 3 \to 4 \to 4,$$

$\beta_k \sigma \beta_k^{-1}$ has the effect

$$1 \to 3 \to 4 \to 4, \quad 3 \to 1 \to 2 \to k, \quad k \to 2 \to 1 \to 3,$$

and $\gamma_k \sigma \gamma_k^{-1}$ has the effect

$$2 \to 3 \to 4 \to 4, \quad 3 \to 2 \to 1 \to k, \quad k \to 1 \to 2 \to 3.$$

The conjugates of σ by the α’s are different from each other since they take different elements to 4, the conjugates of σ by the β’s are different from each other since they take different elements to 3, and the conjugates of σ by the γ’s are different from each other since they take different elements to 3. Conjugates of σ by an α and a β are different since they send 1 to different places, conjugates of σ by an α and a γ are different since they send 2 to different places, and conjugates of σ by a β and a γ are different since they send different elements to 4 (1 for the β’s and 2 for the γ’s). In total the number of conjugates of σ we have written down (which are all conjugates by 3-cycles, hence they are conjugates in A_n if $\sigma \in A_n$) is $3(n - 4)$, and $3(n - 4) \geq n$ if $n \geq 6$.

Now we prove Theorem 1.1.

Proof. We argue by induction on n, the case $n = 5$ having already been settled by Theorem 3.1. Say $n \geq 6$. Let $N < A_n$ with $N \neq \{(1)\}$. Since N is normal and non-trivial, it contains non-identity conjugacy classes in A_n. By Lemma 5.1, any non-identity conjugacy class in A_n has size at least n when $n \geq 6$. Therefore, by counting the trivial conjugacy class and a non-trivial conjugacy class in N, we see $|N| \geq n + 1$.

Using a wholly different argument, we now show that $|N| \leq n$ if $N \neq A_n$, which will be a contradiction. Pick $1 \leq i \leq n$. Let $H_i \subset A_n$ be the subgroup fixing i, so $H_i \cong A_{n-1}$. In particular, H_i is a simple group by induction. Notice each H_i contains a 3-cycle.

The intersection $N \cap H_i$ is a normal subgroup of H_i, so simplicity of H_i implies $N \cap H_i$ is either $\{(1)\}$ or H_i. If $N \cap H_i = H_i$ for some i, then $H_i \subset N$. Since H_i contains a 3-cycle, N does as well, so $N = A_n$ by Lemmas 2.1 and 2.2. (This part resembles part of our first proof of simplicity of A_n, but we will now use Lemma 5.1 instead of Lemma 3.2 to show the possibility that $N \cap H_i = \{(1)\}$ for all i is absurd.)

Suppose $N \neq A_n$. Then, by the previous paragraph, $N \cap H_i = \{(1)\}$ for all i. Therefore each $\sigma \neq 1$ in N acts on $\{1, 2, \ldots, n\}$ without fixed points (otherwise σ would be a non-identity element in some $N \cap H_i$). That implies each $\sigma \neq 1$ in N is completely determined by the value $\sigma(1)$: if $\tau \neq 1$ is in N and $\sigma(1) = \tau(1)$, then $\sigma \tau^{-1} \in N$ fixes 1, so $\sigma \tau^{-1}$ is the identity, so $\sigma = \tau$.

There are only $n - 1$ possible values for $\sigma(1) \in \{2, 3, \ldots, n\}$, so $N - \{(1)\}$ has size at most $n - 1$, hence $|N| \leq n$. We already saw from Lemma 5.1 that $|N| \geq n + 1$, so we have a contradiction. \qed
6. Fourth proof

Our next proof, based on [3, p. 50], is very computational.

Proof. Let $N \lhd A_n$ be a non-trivial normal subgroup. We will show N contains a 3-cycle.

Pick $\sigma \in N$, $\sigma \neq (1)$. Write
\[\sigma = \pi_1 \pi_2 \cdots \pi_k, \]
where the π_j’s are disjoint cycles. In particular, they commute, so we can relabel them at our convenience. Eliminate any 1-cycles from the product.

Case 1: Some π_i has length at least 4. Relabelling, we can write
\[\pi_1 = (12 \cdots r) \]
with $r \geq 4$. Let $\varphi = (123)$. Then $\varphi \sigma \varphi^{-1} \in N$ and
\[
\varphi \sigma \varphi^{-1} = \varphi \pi_1 \varphi^{-1} \pi_2 \cdots \pi_k \\
= \varphi \pi_1 \varphi^{-1} \pi_1^{-1} \sigma \\
= (123)(123 \cdots r)(132)(r \cdots 21) \sigma \\
= (124) \sigma,
\]
so $(124) = \varphi \sigma \varphi^{-1} \sigma^{-1} \in N$.

Case 2: Each π_i has length ≤ 3, and at least two have length 3 (so $n \geq 6$). Without loss of generality, $\pi_1 = (123)$ and $\pi_2 = (456)$. Let $\varphi = (124)$. Then
\[
\varphi \sigma \varphi^{-1} = \varphi \pi_1 \pi_2 \varphi^{-1} \pi_3 \cdots \pi_k \\
= \varphi \pi_1 \pi_2 \varphi^{-1} \pi_2^{-1} \pi_1^{-1} \sigma \\
= (124)(123)(456)(142)(465)(132) \sigma \\
= (12534) \sigma,
\]
so $\varphi \sigma \varphi^{-1} \sigma^{-1} = (12534) \in N$. Now run through Case 1 with this 5-cycle to find a 3-cycle in N.

Case 3: Exactly one π_i has length 3, and the rest have length ≤ 2. Without loss of generality, $\pi_1 = (123)$ and the other π_i’s are 2-cycles. Then $\sigma^2 = \pi_1^2$ is in N, and $\pi_1^2 = (132)$.

Case 4: All π_i’s are 2-cycles, so necessarily $k > 1$. Write $\pi_1 = (12)$ and $\pi_2 = (34)$. Let $\varphi = (123)$. Then
\[
\varphi \sigma \varphi^{-1} = \varphi \pi_1 \pi_2 \varphi^{-1} \pi_3 \cdots \pi_k \\
= \varphi \pi_1 \pi_2 \varphi^{-1} \pi_2^{-1} \pi_1^{-1} \sigma \\
= (123)(12)(34)(132)(34)(12) \sigma \\
= (13)(24) \sigma,
\]
so
\[\varphi \sigma \varphi^{-1} \sigma^{-1} = (13)(24) \in N. \]

Let $\psi = (135)$. Then
\[
(13)(24) \psi (13)(24) \psi^{-1} = (13)(24)(135)(13)(24)(153) \\
= (13)(135)(13)(153) \\
= (135),
\]
so N contains a 3-cycle. \(\square\)
7. Fifth proof

Our final proof is taken from [8, p. 295].

Let \(N \triangleleft A_n \) with \(N \) not \(\{1\} \) or \(A_n \). We will study \(N \) as a subgroup of \(S_n \). By Lemma 2.4, \(N \) is not a normal subgroup of \(S_n \). This means the normalizer of \(N \) inside \(S_n \) is a proper subgroup, which contains \(A_n \), so

\[
A_n = N_{S_n}(N).
\]

(7.1)

For any transposition \(\tau \) in \(S_n \), \(\tau \not\in N_{S_n}(N) \) by (7.1), so \(\tau N \tau^{-1} \neq N \). Since \(N \triangleleft A_n \) and \(\tau N \tau^{-1} \) is a subgroup of \(A_n \), the product set \(N \cdot \tau N \tau^{-1} \) is a subgroup of \(A_n \). We have the chain of inclusions

\[
N \cap \tau N \tau^{-1} \subset N \subset N \cdot \tau N \tau^{-1} \subset A_n,
\]

where the first and second are strict.

We will now show, for any transposition \(\tau \) in \(S_n \), that

\[
N \cap \tau N \tau^{-1} \triangleleft S_n, \quad N \cdot \tau N \tau^{-1} \triangleleft S_n.
\]

(7.2)

The proof of (7.2) is a bit tedious, so first let’s see why (7.2) leads to a contradiction.

It follows from (7.2) and Lemma 2.4 that

\[
N \cap \tau N \tau^{-1} = \{1\}, \quad N \cdot \tau N \tau^{-1} = A_n
\]

(7.3)

for any transposition \(\tau \) in \(S_n \). By (7.3), \(|A_n| = |N| \cdot |\tau N \tau^{-1}| = |N|^2 \), so \(n! = 2|N|^2 \). This tells us \(|N| \) must be even, so \(N \) has an element, say \(\sigma \), of order 2. Then \(\sigma \) is a product of disjoint 2-cycles. There is a transposition \(\rho \) in \(S_n \) which commutes with \(\sigma \): just take for \(\rho \) one of the transpositions in the disjoint cycle decomposition of \(\sigma \). Then

\[
\sigma = \rho \sigma \rho^{-1} \in N \cap \rho N \rho^{-1}.
\]

From (7.3), using \(\rho \) for the arbitrary \(\tau \) there, \(N \cap \rho N \rho^{-1} \) is trivial, so we have a contradiction. (As another way of reaching a contradiction from the equation \(n! = 2|N|^2 \), we can use Bertrand’s postulate – proved by Chebyshev – that there is always a prime strictly between \(m \) and \(2m \) for any \(m > 1 \). That means, taking \(m = n!/4 \), the ratio \(n!/2 \) can’t be a perfect square.)

It remains to check the two conditions in (7.2). In both cases, we show the subgroups are normalized by \(A_n \) and by \(\tau \), so the normalizer contains \(\langle A_n, \tau \rangle = S_n \).

First consider \(N \cap \tau N \tau^{-1} \). It is clearly normalized by \(\tau \). Now pick any \(\pi \in A_n \). Then \(\pi N \pi^{-1} = N \) since \(N \triangleleft A_n \), and

\[
\pi(\tau N \tau^{-1})\pi^{-1} = \tau(\tau^{-1} \pi \tau)N(\tau^{-1} \pi^{-1} \tau)\tau^{-1} = \tau N \tau^{-1}
\]

(7.4)

since \(\tau^{-1} \pi \tau \in A_n \). Therefore

\[
\pi(N \cap \tau N \tau^{-1})\pi^{-1} = \pi N \pi^{-1} \cap \pi \tau N \tau^{-1} \pi^{-1} = N \cap \tau N \tau^{-1},
\]

so \(A_n \) normalizes \(N \cap \tau N \tau^{-1} \).

Now we look at \(N \cdot \tau N \tau^{-1} \). Pick an element of this product, say \(\sigma = \sigma_1 \tau \sigma_2 \tau^{-1} \),

where \(\sigma_1, \sigma_2 \in N \). Then, since \(N \triangleleft A_n \),

\[
\tau \sigma \tau^{-1} = \tau \sigma_1 \tau \sigma_2 \tau^{-2} = \tau \sigma_1 \tau \sigma_2 \in \tau N \tau^{-1} \cdot N = N \cdot \tau N \tau^{-1},
\]

which shows \(\tau \) normalizes \(N \cdot \tau N \tau^{-1} \).
Now pick any $\pi \in A_n$. To see π normalizes $N \cdot \tau N \tau^{-1}$, pick σ as before. Then

$$\pi \sigma \pi^{-1} = \pi \sigma_1 \pi^{-1} \cdot \pi (\tau \sigma_2 \tau^{-1}) \pi^{-1}.$$

The first factor $\pi \sigma_1 \pi^{-1}$ is in N since $N \triangleleft A_n$. The second factor is in $\pi \tau N \tau^{-1} \pi^{-1}$, which equals $\tau N \tau^{-1}$ by (7.4).

8. Concluding Remarks

The standard counterexample to the converse of Lagrange’s theorem is A_4: it has size 12 but no subgroup of index 2. For $n \geq 5$, the groups A_n also have no subgroup of index 2, since any index-2 subgroup of a group is normal and A_n is simple.

In fact, something stronger is true.

Corollary 8.1. For $n \geq 5$, any proper subgroup of A_n has index at least n.

This is an analogue of Theorem 2.7.

Proof. Let H be a proper subgroup of A_n, with index $m > 1$. Consider the left multiplication action of A_n on A_n/H. This gives a group homomorphism

$$\varphi: A_n \to \text{Sym}(A_n/H) \cong S_m.$$

Let K be the kernel of φ, so $K \subset H$ (why?) and $K \triangleleft A_n$. By simplicity of A_n, K is trivial. Therefore A_n injects into S_m, so $(n!/2) \mid m!$, which implies $n \leq m$.

The lower bound of n is sharp since $[A_n : A_{n-1}] = n$. Corollary 8.1 is false for $n = 4$: A_4 has a subgroup of index 3.

Remark 8.2. What the proof of Corollary 8.1 shows more generally is that if G is a finite simple group and H is a subgroup with index $m > 1$, then there is an embedding of G into S_m, so $|G| \mid m!$. With G fixed, this divisibility relation puts a lower bound on the index of any proper subgroup of G.

A reader who wants to see more proofs that A_n is simple for $n \geq 5$ can look at [4, pp. 247-248] or [5, pp. 32–33] for another way of showing a non-trivial normal subgroup contains a 3-cycle, or at [1, §1.7] or [7, pp. 295–296] for a proof based on the theory of highly transitive permutation groups.

References