
SELMER’S EXAMPLE

KEITH CONRAD

1. Introduction

Selmer’s cubic is 3x3 + 4y3 + 5z3. It is a famous example of an irreducible polynomial
that has no nontrivial rational zero (that is, no rational zero other than (0, 0, 0)), but it has
a nontrivial real and p-adic zero for all p.

Theorem 1 (Selmer [4]). The equation 3x3 + 4y3 + 5z3 = 0 has only the solution (0, 0, 0)
over Q, but it has a nonzero solution over R and every Qp.

We will first prove there is a nontrivial zero in each completion, relying for the most part
on Hensel’s lemma, and then use algebraic number theory to show there is no zero over Q
other than (0, 0, 0).

2. No local solutions

There is obviously a nonzero solution in R. To show there is a solution besides (0, 0, 0) in
each Qp we follow a method I learned from Kevin Buzzard. The basic idea is to show there
is a nonzero solution modulo p and then lift that solution p-adically by Hensel’s lemma. We
will separately treat the cases p = 3, p = 5, and p 6= 3 or 5.

To find a 3-adic solution, set x = 0 and z = −1, making the equation 4y3 − 5 = 0, or
y3 = 5/4. Although 5/4 ≡ −1 mod 9 and −1 is a 3-adic cube, this congruence modulo 9
isn’t sharp enough to conclude by Hensel’s lemma that 5/4 is a 3-adic cube: to use Hensel’s
lemma (in the form |f(α)|3 < |f ′(α)|23), we seek an α ∈ Z×3 such that |α3 − 5/4|3 < 1/9,
i.e., α3 ≡ 5/4 mod 27. The choice α = 2 works, so 5/4 is a 3-adic cube and we can solve
Selmer’s equation in Q3 as (0, y,−1) where y3 = 5/4 in Z3.

If p 6= 3 and the p-adic integer a is a nonzero cube mod p then a is a cube in Z×p by

Hensel’s lemma for X3 − a. In particular, for p = 5, set x = 1 and z = 0 to make Selmer’s
equation 3 + 4y3 = 0, or y3 = −3/4. Since −3/4 ≡ 3 ≡ 23 mod 5, by Hensel’s lemma for
X3 + 3/4 with approximate solution 2 we see that −3/4 is a 5-adic cube. We get a 5-adic
solution to Selmer’s equation as (1, y, 0) where y3 = −3/4 in Z5.

From now on let p be a prime other than 3 or 5 (this includes allowing p = 2). Then
3, 5 6≡ 0 mod p. We are going to look at the group (Z/(p))×, which is cyclic of order p− 1.
What proportion of the group is filled up by cubes?

• If p ≡ 1 mod 3 then the cubes in (Z/(p))× are a subgroup of index 3.
• If p 6≡ 1 mod 3 then (3, p− 1) = 1, so every number in (Z/(p))× is a cube.

If 3 mod p is a cube then 3 is a cube in Zp by Hensel’s lemma for X3− 3, so we can solve
Selmer’s equation as (x, 1,−1) where x3 = 1/3 in Qp.

If 3 mod p is not a cube then not all numbers in (Z/(p))× are cubes. Thus p ≡ 1 mod
3, so the nonzero cubes mod p are a subgroup of (Z/(p))× that has index 3 and coset
representatives {1, 3, 9}: for every a 6≡ 0 mod p we have a ≡ b3, 3b3, or 9b3 mod p for some
b 6≡ 0 mod p. We will apply this with a = 5.
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• If 5 ≡ b3 mod p then 5 is a cube in Zp by Hensel’s lemma for X3 − 5, and we can
solve Selmer’s equation as (−y, y,−1) where y3 = 5 in Zp.
• If 5 ≡ 3b3 mod p then 5/3 is a cube in Zp by Hensel’s lemma and we can solve

Selmer’s equation as (x, 0,−1) where x3 = 5/3.
• If 5 ≡ 9b3 mod p then 5 · 3 = 15 is a cube in Zp by Hensel’s lemma and we can

solve Selmer’s equation as (3t, 5,−7) where t3 = 15. That is, 3a3 + 4b3 = 5c3 where
a = 3t, b = 5, and c = 7.

This completes the proof that Selmer’s equation has local solutions everywhere.

3. Global solutions

To prove 3x3 + 4y3 + 5z3 = 0 has no rational solution besides (0, 0, 0), assume there
is a rational solution (x, y, z). Multiplying through by 2 and rearranging terms, we get
(2y)3 + 6x3 = 10(−z)3. We will show the only rational solution to the equation

(3.1) X3 + 6Y 3 = 10Z3

is (0, 0, 0), which implies the only rational solution to Selmer’s equation is (0, 0, 0).
By clearing denominators in (3.1), we can assume that X, Y , and Z are integers. They

are not all 0, so in fact none are 0 since the coefficient ratios 6, 10, and 10/6 are not
cubes in Q. If a prime p divides two of X, Y , or Z then it also divides the third since
the coefficients 6 and 10 in (3.1) aren’t divisible by the cube of any prime. Then we can
divide through all the terms in (3.1) by p3 to get a smaller integral solution of the same
equation. Hence without loss of generality X, Y , and Z are pairwise relatively prime.

Since 6 and 10 are each even, necessarily X is even . If either Y or Z were also even then
both would be even (since 6 and 10 are each divisible by 2 just once), but X, Y , and Z

can’t all be even. Thus Y and Z are both odd . We can also conclude from (3.1) that

X and Z are not divisible by 3 and X and Y are not divisible by 5 .

Factor the left side of (3.1) in Z[ 3
√

6]: writing α = 3
√

6, (3.1) is equivalent to

(3.2) (X + Y α)(X2 −XY α+ Y 2α2) = 10Z3.

Claim 1: Z[α] is the ring of integers in Q[α].
Proof of claim. For any non-cube integer d,

disc(Z[
3
√
d]) = −27d2 = [O

Q(
3√
d)

: Z[
3
√
d]]2 disc(O

Q(
3√
d)

),

so the index of Z[ 3
√
d] in the ring of integers of Q( 3

√
d) divides 3d. In particular, the index

of Z[ 3
√

6] in the integers of Q( 3
√

6) divides 18. Since T 3 − 6 is Eisenstein at 2 and 3, the
index of Z[ 3

√
6] in the integers of Q( 3

√
6) is not divisible by 2 or 3, so the index is 1.

Passing from (3.2) to an equation of principal ideals in Z[α],

(3.3) (X + Y α)(X2 −XY α+ Y 2α2) = (10)(Z)3.

To derive information about the prime ideal factorization of (X + Y α) from this equation,
we need to determine how the ideal (10) factors.

The way a prime p factors in Z[α] ∼= Z[T ]/(T 3 − 6) matches how T 3 − 6 factors mod p.
The following table shows how the ideals (2) and (5) decompose, so (10) = p32p5p25.

p T 3 − 6 mod p (p)

2 T 3 p32
5 (T − 1)(T 2 + T + 1) p5p25



SELMER’S EXAMPLE 3

Writing N for the field norm NQ(α)/Q, we have for each integer k that N(α+ k) = k3 + 6.
The table below collects a few norm values.

k −2 −1 0 1 2 4

k3 + 6 −2 5 6 7 14 70

Since there are unique prime ideals of norm 2 and 5, p2 = (α− 2) and p5 = (α− 1) . We

will use the other norm values later.

Claim 2: The principal ideal (X + Y α) decomposes in Z[α] as

(3.4) (X + Y α) = p2p5b
3 = (α− 2)(α− 1)b3

for some ideal b.
Proof of claim. (This proof, which involves a careful analysis of ideal factorizations in

Z[α], takes a fair bit of work and could be skipped to see how the claim gets used first.)
We will show the only common prime ideal factor of (X + Y α) and (X2 −XY α+ α2) is

p2. Since N(α) = 6, the ideal (α) is divisible by p2, so X being even makes (X + Y α) and
(X2 −XY α+ Y 2α2) both divisible by p2.

In the other direction, let p be a prime ideal such that

(3.5) p | (X + Y α) and p | (X2 −XY α+ Y 2α2),

so

X + Y α ≡ 0 mod p and X2 −XY α+ Y 2α2 ≡ 0 mod p.

Since X2 −XY α+ Y 2α2 = (X + Y α)2 − 3XY α, we get 3XY α ≡ 0 mod p. Thus p divides
one of the ideals (3), (X), (Y ), or (α).

• If p | (3) then the norm of p is a power of 3. Since p divides (Z)3 by equation (3.3),
taking norms implies Z is divisible by 3, which is false.
• If p | (X) then Y α ≡ 0 mod p since X + Y α ≡ 0 mod p, which implies p | (Y )(α).

From relative primality of X and Y , p can’t divide (Y ) (otherwise X and Y would
be divisible by whatever prime number p divides), so p | (α).
• If p | (Y ) then X ≡ 0 mod p since X + Y α ≡ 0 mod p, but that means p | (X),

which contradicts the relative primality of X and Y .

The conclusion is that any prime ideal p satisfying (3.5) is a factor of (α) and not a factor
of the ideal (3). Since (α)3 = (6) = (2)(3), p must be a factor of the ideal (2), so p = p2.

Any common ideal factor of the ideals on the left side of equation (3.3) is a power of
p2. How high a power can be a common divisor? Since X is even and Y is odd and (α) is
divisible by p2 just once, we have X ≡ 0 mod p32, Y α ≡ 0 mod p2, and Y α 6≡ 0 mod p22, so
(X + Y α) is divisible by p2 just once. Therefore

(X + Y α) = p2c, (X2 −XY α+ Y 2α2) = p2c
′

where c and c′ are relatively prime ideals in Z[α] and p2 doesn’t divide c.
Plugging these factorizations into equation (3.3), p22cc

′ = (10)(Z)3 = p32p5p25(Z)3, so p2
is a factor of c′. Which of c or c′ is divisible by p5 and p25?

From X3 + 6Y 3 = 10Z3 we get X3 ≡ (−Y )3 mod 5. Cubing is a bijection on Z/(5), so
X ≡ −Y mod 5. Therefore X + Y α ≡ X + Y ≡ 0 mod p5, which means p5 | (X + Y α).
If p25 | (X + Y α) then p5p25 = (5) divides (X + Y α), so 5 is a factor of X + Y α in Z[α],
which implies X and Y are divisible by 5 in Z, and that is false. Thus p25 is not a factor
of (X + Y α), so p25 is a factor of (X2 −XY α+ Y 2α2).
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Write c = p5m and c′ = p2p25m
′. Then

(X + Y α) = p2p5m and (X2 −XY α+ Y 2α2) = p22p25m
′.

Multiplying these together, we obtain (X3 + 6Y 3) = (10)mm′ so (10)(Z)3 = (10)mm′. The
ideals m and m′ are relatively prime since c and c′ are relatively prime, so m (as well as m′)
must be a cube. This proves (3.4).

Claim 3: Q(α) has class number 1.
Proof of claim. The Minkowski bound for Q(α) = Q( 3

√
6) is(

4

π

)r2 n!

nn

√
| disc(Z[

3
√

6])| = 4

π

6

27

√
27 · 62 =

16
√

3

π
≈ 8.82.

Therefore the class group is generated by the ideal classes of primes with norm at most 8.
We have already seen that there is a unique prime ideal of norm 2, namely p2 = (α − 2),
and no prime ideal of norm 4 or 8 since (2) = p32. To factor (3), from T 3 − 6 ≡ T 3 mod 3
we obtain (3) = p33. Since N(α) = 6, we have (α) = p2p3 = (α − 2)p3, so p3 is principal.
The only ideal of norm 5 is p5 = (α− 1), which is principal. It remains to factor (7). Since
T 3−6 ≡ (T +1)(T +2)(T +4) mod 7, we have (7) = p7p

′
7p
′′
7 where these prime ideals satisfy

p7 | (α + 1), p′7 | (α + 2), and p′′7 | (α + 4). From the table of norm values before Claim 2
we have N(α+ 1) = 7, N(α+ 2) = 14, and N(α+ 4) = 70, so (α+ 1) = p7, (α+ 2) = p2p

′
7,

and (α + 4) = p2p5p
′′
7. Since p2 and p5 are principal, all the prime ideals of norm 7 are all

principal. Thus the class number of Q(α) is 1.

By Claim 3 the ideal b in Claim 2 is principal, say b = (β), so equation (3.4) leads to an
equation of elements:

(3.6) X + Y α = (α− 2)(α− 1)β3u

for some unit u in Z[α]. In this equation the unit u only matters modulo multiplication by
unit cubes since any unit cube can be absorbed into β.

Claim 4: The units in Z[α] modulo unit cubes are represented by (1 − 6α + 3α2)k for
k = 0, 1, and 2.

Proof of claim. Since Q(α) has r1 = 1 and r2 = 1 by Dirichlet’s unit theorem Z[α]× =
±εZ for some ε, so Z[α]×/(Z[α]×)3 is cyclic of order 3. Therefore any unit that is not a
cube generates the units modulo cubes. (That is, any non-identity element in a group of
prime order is a generator.) To find a noncube unit, observe that (2) = p32 = (α− 2)3, so

(α− 2)3

2
=
α3 − 6α2 + 12α− 8

2
= −1 + 6α− 3α2 ≈ −.00306

is a unit. Its negative 1− 6α+ 3α2 is also a unit. To check this is not a cube of a unit, we
verify it is not a cube in a suitably chosen residue field. Specifically, the ideal p7 = (α+ 1)
has norm 7 and in Z[α]/p7 ∼= Z/(7) we have

1− 6α+ 3α2 ≡ 1− 6(−1) + 3(1) = 10 ≡ 3 mod p7,

and this is not a cube since 3 is not a cube in Z/(7).

Remark 1. The unit 1− 6α+ 3α2 is actually a generator of Z[α]× (modulo ±1), but that
takes more effort to prove and Claim 4 is sufficient information for us about units in Z[α].
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Since

1− 6α+ 3α2 = −(α− 2)3

2
=

(2− α)3

2
,

by Claim 4 we can write u in equation (3.6) as ((2 − α)3/2)kv3 = ((2 − α)kv)3/2k where
v ∈ Z[α]× and k is 0, 1, or 2. Multiplying through equation (3.6) by 2k, we absorb
((2− α)kv)3 into β3 to get

(3.7) 2kX + 2kY α = (α− 2)(α− 1)γ3

for some γ ∈ Z[α]. Write γ = A+Bα+ Cα2, where A, B, and C are integers that are not
all 0.

Compute (α− 2)(α− 1)γ3 as a Z-linear combination of 1, α, and α2 and then equate the
coefficients of α2 on both sides of equation (3.7) to get

(3.8) 0 = A3 + 6B3 + 36C3 + 36ABC− 9(A2B+ 6AC2 + 6B2C) + 6(AB2 +A2C + 6BC2).

In this equation each term other than A3 is a multiple of 3, so 0 ≡ A3 mod 3. Thus
3 | A, which makes each term in (3.8) other than the second term 6B3 divisible by 9, so
0 ≡ 6B3 mod 9. That implies 3 | B, which forces each term in (3.8) other than the third
term 36C3 to be divisible by 27, so 0 ≡ 36C3 mod 27. Thus 3 | C.

We have shown A, B, and C in (3.8) are each divisible by 3. The right side of (3.8) is
homogeneous of degree 3 in A, B, and C, so we can remove a common factor of 27 from
all the terms and obtain another equation (3.8) where A, B, and C are one-third as large.
Repeating this infinitely often forces A, B, and C to equal 0, which is a contradiction. This
completes the proof that Selmer’s equation has no rational solution other than (0, 0, 0).

Our treatment of Selmer’s equation is based on [3, pp. 220–222], where the analogue of
our equation (3.8) on the top of p. 222 has one incorrect coefficient on the right side.

Other examples of homogeneous cubics fitting the conditions of Selmer’s theorem are

x3 + 5y3 + 12z3, x3 + 4y3 + 15z3, x3 + 3y3 + 20z3, x3 + 3y3 + 22z3.

Other examples that can be analyzed without algebraic number theory are in [1].

Remark 2. Just as counterexamples to unique factorization in number fields can acquire a
positive interpretation as non-trivial elements in an ideal class group (that is, such phenom-
ena are associated to non-principal ideals), Selmer’s example has a positive interpretation:
it represents a non-trivial element in the Tate-Shafarevich group of an elliptic curve over
Q, specifically the elliptic curve x3 + y3 + 60z3 = 0. The lack of rational solutions besides
(0, 0, 0) to 3x3 +4y3 +5z3 = 0 can be proved more simply using the theory of elliptic curves
instead of purely by algebraic number theory. See [2, pp. 86–87].
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