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The numbers

Hn = 1 +
1

2
+ · · ·+ 1

n
=

n∑
k=1

1

k

are called harmonic sums. Integrals can approximate these sums as real numbers, e.g., Hn

and
∫ n
1 dt/t = log n differ by a bounded amount (Hn−

∫ n
1 dt/t is positive and montonically

decreasing), so the Hn’s slowly diverge in R. We are interested here in the arithmetic
behavior of harmonic sums, i.e., their p-adic growth. This is definitely not an important
topic, but it is interesting to compare what happens with this rational sequence across the
real and different p-adic landscapes.

Here are some initial values:

n Hn

1 1
2 3/2
3 11/6
4 25/12
5 137/60
6 49/20
7 363/140
8 761/280
9 7129/2520
10 7381/2520
11 83711/27720

Table 1. Harmonic sums

For n > 1, it appears that Hn 6∈ Z. More precisely, the numerator of Hn is odd and the
denominator of Hn is even. This suggests a strategy for proving Hn is not an integer.

Theorem 1 (Taeisinger, 1915). For any n ≥ 2, Hn 6∈ Z.

Proof. Let L be the least common multiple of 1, 2, . . . , n, so Hn can be written as a fraction
with denominator L. For 1 ≤ k ≤ n, write L = kak with ak ∈ Z+, so 1/k = ak/L. Then

Hn =

n∑
k=1

1

k
=

∑n
k=1 ak
L

.

Since n ≥ 2, L is even. We will show
∑n

k=1 ak is odd, so the ratio is not integral.
Set 2r to be the largest power of 2 up to n: 2r ≤ n < 2r+1. The only integer up to n

divisible by 2r is 2r itself, since 2 · 2r > n. Therefore L = 2rb where b is odd, so 2rb = kak
for 1 ≤ k ≤ n. When k = 2r we see that ak = b is odd. When k 6= 2r, k is not divisible by
2r, so ak must be even. Therefore in the numerator

∑n
k=1 ak, one term (at k = 2r) is odd

and the rest are even, so the total sum is odd. �
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Theorem 1 is actually a 2-adic result: Hn 6∈ Z because Hn 6∈ Z2. Here is a second proof
of Theorem 1 brings out the 2-adic features more clearly.

Proof. Let 2r ≤ n < 2r+1, so r ≥ 1 and the highest power of 2 that appears in any reciprocal
in the sum defining Hn is 2r. The only reciprocal in Hn with denominator divisible by 2r is
1/2r. Indeed, any other such reciprocal would be 1/(2rc) for odd c > 1, but if that term is
in the sum then so is 1/(2r · 2) = 1/2r+1, which is false since 2r+1 > n. Therefore 1/2r has
a more highly negative 2-adic valuation than any other term in Hn, so it is not cancelled
out in the sum. This means Hn 6∈ Z2, so Hn 6∈ Z. �

This proof gives a formula for the 2-adic valuation of the harmonic sums: ord2(Hn) = −r
where 2r ≤ n < 2r+1. To see this formula in action, we rewrite the initial harmonic sums in
Table 2 with the power of 2 in the denominators made explicit. The exponent jumps when
n is a power of 2.

n Hn

1 1
2 3/2
3 11/2 · 3
4 25/22 · 3
5 137/22 · 15
6 49/22 · 5
7 363/22 · 35
8 761/23 · 35
9 7129/23 · 315
10 7381/23 · 2520
11 83711/23 · 3465

Table 2. Harmonic sums viewed 2-adically

Since |Hn|2 = 2r where 2r ≤ n < 2r+1, we see that |Hn|2 → ∞ as n → ∞ (explicitly,
n/2 < |Hn|2 ≤ n), so the harmonic sums diverge 2-adically. Do they diverge p-adically for
other primes p? We will address this question later.

Theorem 2 (Kürschák, 1918). For m ≤ n−2, Hn−Hm 6∈ Z2. In particular, Hn−Hm 6∈ Z.

Taking m = 1 and n ≥ 3 recovers Theorem 1 for n ≥ 3 since H1 ∈ Z. Theorem 2 is false
if m = n− 1 and n is odd, since then Hn −Hm = 1/n ∈ Z2.

Proof. Writing

Hn −Hm =

n∑
k=m+1

1

k
,

we will show there is a unique term in the sum with the most negative 2-adic valuation.
Let r = maxm<k≤n ord2(k). Since n ≥ m + 2, the sum Hn −Hm has at least two terms in
it, so some k is even and therefore r ≥ 1.

We will show there is only one integer from m up to n−1 with 2-adic valuation r. Suppose
there are two such numbers. Write them as 2rc and 2rd with odd c < d. Then c+ 1 is even
and 2rc < 2r(c+1) < 2rd, so 1/(2r(c+1)) appears in Hn−Hm. But ord2(2

r(c+1)) ≥ r+1
since c is odd. This contradicts the definition of r. Therefore there is only one term in
Hn −Hm with 2-adic valuation −r, so ord2(Hn −Hm) = −r. �
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We now turn to the p-adic behavior of Hn for p 6= 2. The material below is based on the
notes “Harmonics and Primes” by Nicholas Rogers.

The harmonic sums H1, H2, . . . ,Hp−1 are all p-adically integral, since the denominators
appearing in them are prime to p and thus are p-adic integers (even p-adic units). Since 1/p
is outside the ring Zp, Hp = Hp−1 + 1/p is outside Zp: ordp(Hp) = −1. It need not be true
(as it is for p = 2) that Hn 6∈ Zp for all n ≥ p. For example, H3, H4 and H5 are outside Z3

(all with 3-adic valuation −1), but H6, H7, and H8 are in Z3. Then H9, H10, . . . ,H20 are
outside of Z3. The harmonic sums return to Z3 for H21, H22, and H23, then leave Z3 and
come back in again for H66, H67, and H68. Then the harmonic sums leave Z3 and never
return. In fact, |Hn|3 → ∞ as n → ∞. We will not discuss the proof of this, but the next
theorem gives a simple connection between p-adic integrality and p-adic divergence of the
harmonic sums.

Theorem 3. For a prime p, the following conditions are equivalent:

(1) {n ≥ 1 : Hn ∈ Zp} is finite,
(2) |Hn|p →∞ as n→∞.

Proof. Trivially the second condition implies the first. To prove the (more interesting)
reverse implication, pick n ≥ 1 and write n = pq + r with 0 ≤ r ≤ p − 1. Since 1/k ∈ Zp

when (p, k) = 1, in the quotient group Qp/Zp a harmonic sum is equal to the sum of its
terms whose denominators are divisible by p, so

Hn ≡
1

p
+

1

2p
+ · · ·+ 1

pq
=

1

p
Hq,

so Hn − (1/p)Hq ∈ Zp.
We are assuming that |Hn|p ≤ 1 only finitely many times, so there is some N0 ≥ 1 such

that |Hn|p > 1 for n ≥ N0. We will show this N0 controls the p-adic divergence of the
harmonic sums: for any k ≥ 0,

n ≥ pkN0 =⇒ |Hn|p > pk.

For k = 0 this is true by the definition of N0. Assuming it is true for k, suppose n ≥ pk+1N0.
Writing n = pq + r with 0 ≤ r ≤ p− 1, from pq + r ≥ pk+1N0 we must have q ≥ pkN0, so
|Hq|p > pk. Therefore |(1/p)Hq|p > pk+1. Since Hn − (1/p)Hq ∈ Zp,∣∣∣∣Hn −

1

p
Hq

∣∣∣∣
p

≤ 1 < pk+1 =

∣∣∣∣1pHq

∣∣∣∣
p

,

so by the nonarchimedean property |Hn|p = |(1/p)Hq|p > pk+1. �

The same reasoning shows |Hn|p →∞ as n→∞ if and only if the set {n ≥ 1 : Hn ∈ pZp}
is finite. (Replace the strict inequalities |Hn|p > 1 and |Hn|p > pk in the proof with

|Hn|p ≥ 1 and |Hn|p ≥ pk.) This set, introduced in [2], is denoted

J(p) = {n ≥ 1 : Hn ∈ pZp}.
To say n 6∈ J(p) means Hn has no p in its numerator. For instance, Theorem 1 says
J(2) = ∅. In [2] it is proved that J(3) = {2, 7, 22}, J(5) = {4, 20, 24}, and

J(7) = {6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728}.
The set J(11) has 638 elements [1]. It is conjectured that J(p) is finite for all p, which by
Theorem 3 is equivalent to saying |Hn|p →∞ as n→∞ for all p.

The rest of our discussion will focus on the particular sum Hp−1.

Theorem 4 (Babbage, 1819). For any odd prime p, Hp−1 ∈ pZp. Therefore J(p) 6= ∅ for
p > 2.
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Proof. In the sum

Hp−1 = 1 +
1

2
+ · · ·+ 1

p− 1
,

each term is a unit in Zp, so we can reduce modulo p and check that Hp−1 ≡ 0 mod pZp.
The integers {1, 2, . . . , p − 1} represent the units modulo p, so their inverses do as well.
Thus, after replacing each 1/k with the integer from 1 to p− 1 that is equal to it in Zp/(p),

Hp−1 ≡ 1 + 2 + · · ·+ p− 1 mod p

≡ p(p− 1)

2
mod p

≡ 0 mod p,

where in the last step we needed p 6= 2. �

In Table 3, we factor the initial harmonic sums into primes, and can see in this data (for
p = 5, 7, and 11) that not only is Hp−1 divisible by p, but by p2.

n Hn

1 1
2 3/2
3 11/2 · 3
4 52/22 · 3
5 137/22 · 3 · 5
6 72/22 · 5
7 3 · 112/22 · 5 · 7
8 761/23 · 5 · 7
9 7129/23 · 32 · 5 · 7
10 112 · 61/23 · 32 · 5 · 7
11 97 · 863/23 · 32 · 5 · 7 · 11

Table 3. Harmonic sums fully factored

Theorem 5 (Wolstenholme, 1862). For any prime p ≥ 5, Hp−1 ∈ p2Zp.

Proof. We collect terms in Hp−1 that are equidistant from the middle of the sum:

Hp−1 = 1 +
1

2
+ · · ·+ 1

p− 1

=

(
1 +

1

p− 1

)
+

(
1

2
+

1

p− 2

)
+ · · ·+

(
1

(p− 1)/2
+

1

(p + 1)/2

)

=

(p−1)/2∑
k=1

(
1

k
+

1

p− k

)

=

(p−1)/2∑
k=1

p

k(p− k)

= p

(p−1)/2∑
k=1

1

k(p− k)
.
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Since a p has been pulled out, we want to show this last sum is in pZp. The terms in the
sum are p-adic units, and reducing the terms modulo p yields

(p−1)/2∑
k=1

1

k(p− k)
≡ −

(p−1)/2∑
k=1

1

k2
mod pZp.

The numbers 12, . . . , ((p − 1)/2)2 represent all the nonzero squares modulo p, so their re-
ciprocals also represent the nonzero squares modulo p. Therefore

(p−1)/2∑
k=1

1

k2
≡

(p−1)/2∑
k=1

k2 mod pZp.

Using the formula
∑n

k=1 k
2 = n(n + 1)(2n + 1)/6 with n = (p− 1)/2,

(p−1)/2∑
k=1

k2 =
p(p2 − 1)

24
.

Since p > 3, (p, 24) = 1, so this sum is in pZp and we’re done. �

Theorem 5 says ordp(Hp−1) ≥ 2. If one calculates Hp−1 for primes 3 < p < 10000, always
ordp(Hp−1) = 2. But at p = 16843 and at p = 2124679, ordp(Hp−1) = 3. No further
examples where ordp(Hp−1) > 2 are known.

References

[1] D. W. Boyd, A p-adic study of the partial sums of the harmonic series, Experiment. Math 3 (1994),
287–302.

[2] A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249–257.


	References

