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1. Introduction

The discriminant of a number field K tells us which primes p in Z ramify in OK : the
prime factors of the discriminant. However, the way we have seen how to compute the
discriminant doesn’t address the following themes:

(a) determine which prime ideals in OK ramify (that is, which p in OK have e(p|p) > 1
rather than which p have e(p|p) > 1 for some p),

(b) determine the multiplicity of a prime in the discriminant. (We only know the mul-
tiplicity is positive for the ramified primes.)

Example 1.1. Let K = Q(α), where α3 − α − 1 = 0. The polynomial T 3 − T − 1 has
discriminant −23, which is squarefree, so OK = Z[α] and we can detect how any prime p
factors in OK by seeing how T 3 − T − 1 factors in Fp[T ]. Since disc(OK) = −23, only the
prime 23 ramifies.

Since T 3−T−1 ≡ (T−3)(T−10)2 mod 23, (23) = pq2. One prime over 23 has multiplicity
1 and the other has multiplicity 2. The discriminant tells us some prime over 23 ramifies,
but not which ones ramify. Only q does.

The discriminant of K is, by definition, the determinant of the matrix (TrK/Q(eiej)),
where e1, . . . , en is any Z-basis of OK . By a finer analysis of the trace, we will construct an
ideal in OK which is divisible precisely by the ramified primes in OK . This ideal is called
the different ideal. (It is related to differentiation, hence the name I think.) In the case of
Example 1.1, for instance, we will see that the different ideal is q, so the different singles
out the particular prime over 23 that ramifies. While the discriminant lies downstairs in
Z, the different lies upstairs in OK . The ideal norm of the different is the absolute value
of the discriminant, and this connection between the different and discriminant will tell us
something about the multiplicity of primes in the discriminant. So the different ideal gives
answers to both (a) and (b) above (only a partial answer in the case of (b)).

The main idea needed to construct the different ideal is to do something in number fields
that is analogous to the classical notion of a dual lattice in Euclidean space. We will start
off in Section 2 describing dual lattices in Rn and some of their basic properties. Armed
with that intuition, we will meet the analogous construction in number fields in Section 3
and then construct the different ideal in Section 4.

2. The Z-dual of a lattice in Rn

In Rn, the standard dot product gives a notion of orthogonal complement: when V ⊂ Rn

is a subspace, we set

V ⊥ = {w ∈ Rn : w ⊥ V } = {w ∈ Rn : w · V = 0}.
Then Rn = V ⊕ V ⊥, V ⊥⊥ = V , and V1 ⊂ V2 ⇐⇒ V ⊥2 ⊂ V ⊥1 .

1
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A lattice in Rn is, by definition, the Z-span of a basis of Rn.1 The standard lattice is Zn,
for instance. There is a concept for lattices in Rn somewhat like the orthogonal complement
of a subspace.

Definition 2.1. For a lattice L ⊂ Rn its Z-dual is

L∨ = {w ∈ Rn : w · L ⊂ Z}.

This Z-dual of a lattice is not an orthogonal complement. The condition for a vector to
lie in the Z-dual of L is to have integral dot product against all elements of L, not to have
dot product 0 against all elements of L.2 Some similarities with properties of orthogonal
complements will be seen in Corollary 2.7.

If e1, . . . , en is a Z-basis of L, then to have w · v ∈ Z for all v ∈ L it suffices to check
w · ei ∈ Z for i = 1, . . . , n since every element of L is a Z-linear combination of the ei’s.
Here are three examples of dual lattices in R2.

Example 2.2. Let L = Z2 = Z
(
1
0

)
+ Z

(
0
1

)
. For w ∈ R2, w ∈ L∨ if and only if w ·

(
1
0

)
∈ Z

and w ·
(
0
1

)
∈ Z. Writing w =

(
a
b

)
, the two dot products are a and b, so L∨ = Z2 = L. The

lattice Z2 is “self-dual.”

Example 2.3. Let L = Z
(
1
0

)
+ Z

(
1
2

)
. Then

(
a
b

)
is in L∨ when a ∈ Z and a+ 2b ∈ Z, which

is equivalent to a ∈ Z and b ∈ (1/2)Z, so L∨ = Z
(
1
0

)
+ Z

(
0

1/2

)
.

Example 2.4. Let L = Z
(
2
1

)
+ Z

(
1
3

)
. To say

(
a
b

)
∈ L∨ is equivalent to 2a + b ∈ Z and

a+ 3b ∈ Z. The system of equations

2a+ b = x

a+ 3b = y

is equivalent to

a =
3

5
x− 1

5
y

b = −1

5
x+

2

5
y,

so (
a

b

)
= x

(
3/5

−1/5

)
+ y

(
−1/5

2/5

)
.

Thus L∨ = Z
( 3/5
−1/5

)
+ Z

(−1/5
2/5

)
.

Theorem 2.5. If L =
⊕n

i=1 Zei is a lattice in Rn then its Z-dual is L∨ =
⊕n

i=1 Ze∨i , where
{e∨i } is the dual basis to {ei} relative to the dot product on Rn: ei · e∨j = δij. In particular,

L∨ is a lattice.

Proof. For w ∈ Rn, write it in the dual basis {e∨1 , . . . , e∨n} as w =
∑n

i=1 cie
∨
i . Then w·ei = ci,

so to say w ∈ L∨ is equivalent to the coefficients ci being integers. Therefore L∨ is the Z-
span of the e∨i ’s. �

1Topologically, the lattices in Rn are the subgroups Λ such that Λ is discrete and Rn/Λ is compact.
2The Z-dual is the dual space of L as a Z-module: every Z-linear map L→ Z has the form v 7→ w · v for

a unique w ∈ L∨.
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Example 2.6. Let L = Z
(
1
0

)
+ Z

(
1
2

)
, as in Example 2.3. The dual basis to

(
1
0

)
and

(
1
2

)
is(

1
−1/2

)
and

(
0

1/2

)
, so by Theorem 2.5, L∨ = Z

(
1
−1/2

)
+ Z

(
0

1/2

)
. If we do a change of basis,

replacing
(

1
−1/2

)
with

(
1
−1/2

)
+
(

0
1/2

)
=
(
1
0

)
and keeping

(
0

1/2

)
then we recover the spanning

set for L∨ in Example 2.3.

Corollary 2.7. For lattices in Rn, the following properties hold:

(1) L∨∨ = L,
(2) L1 ⊂ L2 ⇐⇒ L∨2 ⊂ L∨1 ,
(3) (L1 + L2)

∨ = L∨1 ∩ L∨2 ,
(4) (L1 ∩ L2)

∨ = L∨1 + L∨2 .

Proof. (1): Theorem 2.5 and double duality of vector spaces tells us L∨∨ = L since the dual
basis of a dual basis is the original basis, whose Z-span is the original lattice.

(2): It is easy to see from the definitions that if L1 ⊂ L2 then L∨2 ⊂ L∨1 . Applying this
to the inclusion L∨2 ⊂ L∨1 gives us L∨∨1 ⊂ L∨∨2 , so L1 ⊂ L2.

(3): If v ∈ (L1 + L2)
∨ then v has integral dot product with any vector in L1 + L2, and

hence with any vector in L1 and any vector in L2. Thus v ∈ L∨1 and v ∈ L∨2 , so v ∈ L∨1 ∩L∨2 .
We have shown (L1 + L2)

∨ ⊂ L∨1 ∩ L∨2 . The reverse inclusion is just as easy to check.
(4): Rather than directly verify that (L1 ∩ L2)

∨ = L∨1 + L∨2 , we will check the two sides
are equal by checking their dual lattices are equal. That means, by double duality, we want
to check L1 ∩ L2 = (L∨1 + L∨2 )∨. From (3), (L∨1 + L∨2 )∨ = L∨∨1 ∩ L∨∨2 = L1 ∩ L2, so we are
done. �

One property of orthogonal complements that is not shared by dual lattices is V ⊕V ⊥ =
Rn. The lattices L and L∨ are not complementary in the direct sum sense. Both a lattice
and its dual lattice have rank n.

3. Lattices in Number Fields

The ideas about lattices in Rn will not literally be used, but they are the motivation
for what we do now in number fields. Replace Rn and its dot product (v, w) 7→ v · w
with a number field K and the operation (x, y) 7→ TrK/Q(xy) on it, which we’ll call the

trace product.3 The trace product has values in Q. Instead of being concerned with vectors
having a dot product in Z, we will look at algebraic numbers having a trace product in Z.

Definition 3.1. In a number field K of degree n, a lattice in K is the Z-span of a Q-basis
of K.

Examples of lattices in K include OK , fractional ideals, and orders.

Definition 3.2. Let L be a lattice in K. Its dual lattice is

L∨ = {α ∈ K : TrK/Q(αL) ⊂ Z}.

As with lattices in Euclidean space, where one can check membership in a dual lattice by
checking the dot products with a basis of the lattice are all in Z, to check α ∈ L∨ it suffices
to check its trace products with a basis of L are all in Z: TrK/Q(αei) ∈ Z for some Z-basis
e1, . . . , en of L.

3The usual term is trace pairing, not trace product. But since we’re trying to emphasize the similarity
to the dot product on Rn, the term “trace product” seems helpful.
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Example 3.3. Let K = Q(i) and L = Z[i] = Z + Zi. For a+ bi ∈ Q(i), a+ bi ∈ L∨ when
TrQ(i)/Q(a+ bi) ∈ Z and TrQ(i)/Q((a+ bi)i) ∈ Z. This is equivalent to 2a ∈ Z and −2b ∈ Z,
so

Z[i]∨ =
1

2
Z +

1

2
Zi =

1

2
Z[i].

Taking L = (1 + 2i)Z[i] = Z(1 + 2i) + Z(−2 + i), calculations like those in Example 2.4
(but using trace products instead of dot products) lead to

L∨ = Z

(
1

10
− i

5

)
+Z

(
−1

5
− i

10

)
= Z

1− 2i

10
+Z
−2− i

10
=

1− 2i

10
(Z−Zi) =

1

2(1 + 2i)
Z[i].

This calculation shows a relation between the dual lattice and the inverse ideal. Writing a
for L = (1 + 2i), an ideal, the calculation of L∨ says a∨ = 1

2a
−1.

Theorem 3.4. For a number field K and a lattice L ⊂ K with Z-basis e1, . . . , en, L∨ =⊕n
i=1 Ze∨i , where {e∨i } is the dual basis to {ei} relative to the trace product on K/Q. In

particular, L∨ is a lattice.

Proof. This is virtually identical to Theorem 2.5, except for the use of the trace product in
place of the dot product. �

Corollary 3.5. For lattices in K, the following properties hold:

(1) L∨∨ = L,
(2) L1 ⊂ L2 ⇐⇒ L∨2 ⊂ L∨1 ,
(3) (L1 + L2)

∨ = L∨1 ∩ L∨2 ,
(4) (L1 ∩ L2)

∨ = L∨1 + L∨2 ,
(5) (αL)∨ = 1

αL
∨ for α ∈ K×.

Proof. The first four properties are proved in the same way as the proof of Corollary 2.7,
and the last one is left to the reader. �

Example 3.6. For any quadratic field K = Q(
√
d), with a squarefree integer d, we use

Theorem 3.4 to compute L∨ for the lattices Z + Z
√
d and Z + Z1+

√
d

2 . (The second lattice
isn’t a ring unless d ≡ 1 mod 4, but it is a lattice for all d, so we can speak of its dual lattice
in all cases.)

The dual basis of {1,
√
d} for K/Q relative to the trace product on K is {12 ,

1
2
√
d
}, so

(Z + Z
√
d)∨ = Z1

2 + Z 1
2
√
d

= 1
2
√
d
(Z
√
d+ Z) = 1

2
√
d
(Z + Z

√
d).

The dual basis of {1, 1+
√
d

2 } relative to the trace product on K is {−1 +
√
d

2
√
d
, 1d
√
d}, and

a calculation yields (Z + Z1+
√
d

2 )∨ = 1√
d
(Z−1+

√
d

2 + Z) = 1√
d
(Z + Z1+

√
d

2 ).

The next theorem tells us the dual basis of a power basis of K (a basis consisting of
powers of a single element). In terms of dual lattices, a tight connection between dual
lattices and differentiation is revealed.

Theorem 3.7. Let K = Q(α) and let f(T ) be the minimal polynomial of α in Q[T ]. Write

f(T ) = (T − α)(c0(α) + c1(α)T + · · ·+ cn−1(α)Tn−1), ci(α) ∈ K.

The dual basis to {1, α, . . . , αn−1} relative to the trace product is { c0(α)f ′(α) ,
c1(α)
f ′(α) , . . . ,

cn−1(α)
f ′(α) }.

In particular, if K = Q(α) and α ∈ OK then

(Z + Zα+ · · ·+ Zαn−1)∨ =
1

f ′(α)
(Z + Zα+ · · ·+ Zαn−1).
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Proof. Let α1, . . . , αn be the Q-conjugates of α in a splitting field, with α = α1. A beautiful
polynomial identity of Euler says

n∑
i=1

1

f ′(αi)

f(T )

T − αi
= 1.

Indeed, both sides are polynomials of degree less than n that are equal at n values. By the
same argument,

n∑
i=1

αki
f ′(αi)

f(T )

T − αi
= T k

for 0 ≤ k ≤ n− 1. Comparing coefficients of like powers of T on both sides,

n∑
i=1

αki
f ′(αi)

cj(αi) = δjk.

The left side is TrK/Q(αk(cj(α)/f ′(α))), so {cj(α)/f ′(α)} is the dual basis to {αj} and

(Z + Zα+ · · ·+ Zαn−1)∨ =
1

f ′(α)
(Zc0(α) + Zc1(α) + · · ·+ Zcn−1(α)).

To show

Zc0(α) + Zc1(α) + · · ·+ Zcn−1(α) = Z + Zα+ · · ·+ Zαn−1

when α ∈ OK , we find a formula for cj(α), the coefficient of T j in f(T )/(T − α). Letting
f(T ) = a0 + a1T + · · ·+ an−1T

n−1 + anT
n ∈ Z[T ], where an = 1,

f(T )

T − α
=

f(T )− f(α)

T − α

=
n∑
i=1

ai
T i − αi

T − α

=

n∑
i=1

ai

i−1∑
j=0

αi−1−jT j

=
n−1∑
j=0

 n∑
i=j+1

aiα
i−1−j

T j ,

so cj(α) =
∑n

i=j+1 aiα
i−1−j , whose top term is αn−j−1 (since an = 1). A transition matrix

from 1, α, . . . , αn−1 to cn−1(α), . . . , c1(α), c0(α) is triangular with integral entries and 1’s on
the main diagonal, so it is invertible over Z and shows the Z-span of the two sets is the
same. �

Example 3.8. Returning to Example 3.6, we recompute (Z + Zα)∨ for α =
√
d or 1+

√
d

2 ,

with f(T ) = T 2 − d or T 2 − T + 1−d
4 , respectively. In the first case f ′(α) = 2

√
d, and in

the second case f ′(α) = 21+
√
d

2 − 1 =
√
d. The formula (Z + Zα)∨ = 1

f ′(α)(Z + Zα) from

Theorem 3.7 recovers the formulas for the dual lattices in Example 3.6.

The most interesting lattice in K is OK . What can we say about

O∨K = {α ∈ K : TrK/Q(αOK) ⊂ Z}?
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First of all, O∨K is not the elements of K with integral trace. It is smaller than that. To lie
in O∨K , the trace product with all elements of OK must lie in Z. This includes the condition
the trace of the element is in Z only as a special case (taking the trace product with 1).
Since algebraic integers have integral trace, OK ⊂ O∨K , so O∨K always contains OK . We saw

earlier that Z[i]∨ = 1
2Z[i], for instance.

The next theorem says the dual lattice of OK is a fractional ideal that “controls” the
dual lattice of any fractional ideal.

Theorem 3.9. For any fractional ideal a in K, a∨ is a fractional ideal and a∨ = a−1O∨K .

This formula explains a∨∨ = a from Corollary 3.5 in the special case of fractional ideals.

Proof. By definition, a∨ = {α ∈ K : TrK/Q(αa) ⊂ Z}. First we check a∨ is a fractional
ideal. We know it is finitely generated as a Z-module (any dual lattice is a lattice), so the
key point is that it is preserved by multiplication by OK . For α ∈ a∨ and x ∈ OK , xα ∈ a∨

since, for any β ∈ a, TrK/Q((xα)β) = TrK/Q(α(xβ)) ∈ Z, as xβ ∈ a and α ∈ a∨.

To show a∨ = a−1O∨K , pick α ∈ a∨. For any β ∈ a, TrK/Q(αβOK) ⊂ Z since βOK ⊂ a.

Therefore αβ ∈ O∨K . Letting β vary in a we get αa ⊂ O∨K , so α ∈ a−1O∨K . Thus a∨ ⊂ a−1O∨K .
The reverse inclusion is left to the reader. �

Theorem 3.10. The dual lattice O∨K is the largest fractional ideal in K whose elements all
have trace in Z.

Proof. For a fractional ideal a, a = aOK . Thus TrK/Q(a) ⊂ Z if and only if TrK/Q(aOK) ⊂
Z, which is equivalent to a ⊂ O∨K . �

This theorem isn’t saying O∨K is the set of all elements in K with integral trace. It’s
the largest fractional ideal whose elements have integral trace. The set of all elements with
integral trace is an additive group, but it is not a fractional ideal.

Example 3.11. Since Z[i]∨ = 1
2Z[i], any fractional ideal whose elements have integral

trace is inside 1
2Z[i]. All the elements of Q(i) with integral trace are 1

2Z + Qi, which isn’t
a fractional ideal at all.

4. The Different Ideal

The construction of O∨K provides us with an interesting canonical fractional ideal in K
other than OK . Because OK ⊂ O∨K , the inverse of O∨K is a fractional ideal inside OK , hence
is an integral ideal.

Definition 4.1. The different ideal of K is

DK = (O∨K)−1 = {x ∈ K : xO∨K ⊂ OK}.
Example 4.2. Since Z[i]∨ = 1

2Z[i] by Example 3.3, DQ(i) = 2Z[i].

Theorem 4.3. If OK = Z[α] then DK = (f ′(α)), where α has minimal polynomial f(T ) ∈
Z[T ].

Proof. Use Theorem 3.7. �

Example 4.4. For a quadratic field K = Q(
√
d) with squarefree d ∈ Z, OK is Z[

√
d] or

Z[(1 +
√
d)/2], depending on d mod 4. Using Example 3.8,

(4.1) DQ(
√
d) =

{
(2
√
d), if d 6≡ 1 mod 4,

(
√
d), if d ≡ 1 mod 4.
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Remark 4.5. It is not true in general that OK = Z[α] for some α, so the different can’t be
calculated as a principal ideal (f ′(α)) all the time. However, the different does divide ideals
of this type. Specifically, for any α ∈ OK , DK | (f ′α(α)) where fα(T ) is the characteristic
polynomial of α in Q[T ]. This is automatic if Q(α) $ K since f ′α(α) = 0, as fα(T ) is a
proper power of the minimal polynomial of α. If Q(α) = K and α ∈ OK , then Z[α] is
a lattice in K and the inclusion Z[α] ⊂ OK implies O∨K ⊂ Z[α]∨, which is equivalent to

D−1K ⊂
1

f ′α(α)
Z[α], so D−1K ⊂

1
f ′α(α)

OK . Inverting ideals, (f ′α(α)) ⊂ DK , so DK | (f ′α(α)). If

we let α vary then DK divides the ideal generated by f ′α(α) as α runs over OK . It can be
shown that DK is equal to the ideal generated by all f ′α(α) for α ∈ OK . This is in marked
contrast to the situation for discriminants: disc(OK/Z) does not always equal the greatest
common divisor of all disc(fα(T )) as α ranges over algebraic integers in K.

Theorem 4.6. For any number field K, N(DK) = | disc(K)|.

Proof. Let e1, . . . , en be a Z-basis for OK , so OK =
⊕n

i=1 Zei. Then D−1K = O∨K =
⊕n

i=1 Ze∨i .
The norm of an ideal is its index in OK , so

N(DK) = [OK : DK ] = 4 [D−1K : OK ] = [O∨K : OK ].

To compute the index [O∨K : OK ], recall that for finite free Z-modules M1 ⊂ M2 of equal
rank, [M2 : M1] = | det(A)| where A is a matrix expressing a Z-basis of M1 in terms of a
Z-basis of M2. For our application, with M1 = OK and M2 = O∨K , let’s write the ei’s in
terms of the e∨i ’s: if ej =

∑n
i=1 aije

∨
i , the meaning of being dual bases relative to the trace

product is that aij = TrK/Q(ejei) = TrK/Q(eiej). Therefore (aij) = (TrK/Q(eiej)). The
determinant of this matrix, by definition, is | disc(K)|, so N(DK) = | disc(K)|. �

Theorem 4.6 tells us that in the inclusions of lattices

DK ⊂ OK ⊂ O∨K

each successive inclusion has index | disc(K)|. In particular, O∨K is strictly larger than OK
if and only if |disc(K)| > 1. That inequality holds for all K 6= Q (Minkowski’s theorem),
so OK is not its own dual lattice when K 6= Q. The different ideal could be considered a
measure of how much OK fails to be self-dual as a lattice in K.

Example 4.4 and Theorem 4.6 recover the formulas for (the absolute value of) the dis-
criminant of a quadratic field from the norm of the different of a quadratic field:

(4.2) |disc(Q(
√
d))| = N(DQ(

√
d)) =

{
4|d|, if d 6≡ 1 mod 4,

|d|, if d ≡ 1 mod 4.

Theorem 4.6 suggests, from experience with the discriminant, there should be a relation
between the different and ramified primes. We will show the prime ideal factors of the
different are the ramified primes in K.

Lemma 4.7. For a nonzero ideal a in OK , a | DK if and only if TrK/Q(a−1) ⊂ Z.

Proof. Since divisibility is the same as containment for integral ideals, a | DK if and only
if a ⊃ DK = (O∨K)−1, which is equivalent to O∨K ⊃ a−1. By Theorem 3.10, this last
containment is equivalent to TrK/Q(a−1) ⊂ Z. �

4For fractional ideals a, b, and c, with a ⊃ b, ac/bc ∼= a/b as OK-modules. When c is a nonzero ideal,
using a = c−1 and b = OK gives us OK/c ∼= c−1/OK . Thus [OK : c] = [c−1 : OK ].
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Here is the central theorem about the different ideal. It not only tells us the prime ideal
factors of the different, but also the multiplicities in most cases.

Theorem 4.8 (Dedekind). The prime ideal factors of DK are the primes in K that ramify
over Q. More precisely, for any prime ideal p in OK lying over a prime number p, with
ramification index e = e(p|p), the exact power of p in DK is pe−1 if e 6≡ 0 mod p, and
pe | DK if p | e.

When p | e, the theorem does not tell us the exact multiplicity of p in DK , but only says
the multiplicity is at least e.

Proof. If we grant that pe−1 | DK , any ramified prime in K divides DK . If p is unramified
over Q, so e = 1, then the last part of the theorem says p doesn’t divide DK since p doesn’t
divide 1. Therefore it remains to check the two divisibility relations.

To show pe−1 | DK , write (p) = pe−1a. Since pe | (p), p | a. To say pe−1 | DK is equivalent,

by Lemma 4.7, to saying TrK/Q(p−(e−1)) ⊂ Z. Since p−(e−1) = 1
pa, TrK/Q(p−(e−1)) ⊂ Z if

and only if TrK/Q(a) ⊂ pZ, which is the same as TrK/Q(α) ≡ 0 mod p for all α ∈ a. This
congruence is what we will actually show.

For α ∈ a, TrK/Q(α) = TrOK/Z(α) and TrOK/Z(α) mod p = Tr(OK/(p))/Fp(α). This last
trace is the trace of multiplication by α on OK/(p) as an Fp-linear map, and α is a general
element of a/(p). (The quotient a/(p) makes sense since a | (p) by the definition of a.)
Since a is divisible by every prime ideal factor of (p) (including p), a high power of a is
divisible by (p). Therefore a high power of α is 0 in OK/(p), which means multiplication
by α on OK/(p) is nilpotent as an Fp-linear map. Nilpotent linear maps have trace 0, so
Tr(OK/(p))/Fp(α) = 0. That completes the proof that pe−1 | DK .

Now we want to show pe | DK if and only if p | e. Write (p) = peb, so b is not divisible
by p. To say pe | DK is equivalent to TrOK/Z(b) ⊂ pZ by Lemma 4.7, which is equivalent to

(4.3) Tr(OK/(p))/Fp(β) = 0 for all β ∈ b.

We will break up OK/(p) into a product of two rings and analyze the trace separately on
both.

Since pe and b are relatively prime, OK/(p) ∼= OK/p
e × OK/b as rings by the natural

map, so

(4.4) Tr(OK/(p))/Fp(x) = Tr(OK/pe)/Fp(x) + Tr(OK/b)/Fp(x)

for all x ∈ OK , where x on the left is x mod (p) and x on the right is x mod pe and
x mod b. (Both OK/b and OK/p

e contain Fp since pe and b both divide (p), so p is 0
in both rings.) If x ∈ b, then x = 0 in OK/b, so Tr(OK/(p))/Fp(x) = Tr(OK/pe)/Fp(x).
For any y ∈ OK , there is an x ∈ OK satisfying x ≡ y mod pe and x ≡ 0 mod b, so
Tr(OK/pe)/Fp(y) = Tr(OK/pe)/Fp(x) = Tr(OK/(p))/Fp(x). Therefore proving (4.3) is equivalent
to proving

(4.5) Tr(OK/pe)/Fp(y) = 0 for all y ∈ OK .

Unlike (4.3), which is quantified over the ideal b, (4.3) runs over OK . We will show (4.5)
happens if and only if p | e.

To study the trace down to Fp of y on OK/p
e, we will filter OK/p

e by subspaces made
from powers of p:

OK/p
e ⊃ p/pe ⊃ p2/pe ⊃ · · · ⊃ pe−1/pe ⊃ pe/pe = {0}.
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Each power pi is an ideal, so multiplication by y is a well-defined linear operator on each
pi/pe (0 ≤ i ≤ e). We now appeal to a result from linear algebra: if V is a finite-dimensional
vector space over a field F , A : V → V is a linear operator and W is a subspace of V such
that A(W ) ⊂W , then

Tr(A : V → V ) = Tr(A : V/W → V/W ) + Tr(A : W →W ).

(This identity is proved by a matrix calculation, using a basis of V/W lifted to V together
with a basis of W to form a basis of V . The matrix for A on V in this basis is block
triangular.) Taking F = Fp, V = OK/p

e, W = p/pe, and A to be multiplication by y,

Tr(OK/pe)/Fp(y) = Tr(my : OK/p
e → OK/p

e)

= Tr(my : OK/p→ OK/p) + Tr(my : p/pe → p/pe).

In a similar way, using multiplication by y on the vector space pi/pe and subspace pi+1/pe,
where 0 ≤ i ≤ e− 1,

Tr(my : pi/pe → pi/pe) = Tr(my : pi/pi+1 → pi/pi+1) + Tr(my : pi+1/pe → pi+1/pe).

Using this recursively for i = 0, 1, . . . , e− 1, we get

(4.6) Tr(OK/pe)/Fp(y) =
e−1∑
i=0

Tr(my : pi/pi+1 → pi/pi+1).

The traces in the sum take values in Fp. We will show the traces are all equal. Choos-
ing π ∈ p − p2, (πi) is divisible by pi but not by pi+1, so pi = (πi) + pi+1. Therefore
OK/p ∼= pi/pi+1 as OK-modules by x mod p 7→ πix mod pi+1. This OK-module isomor-
phism commutes with multiplication by y on both sides, so

Tr(my : pi/pi+1 → pi/pi+1) = Tr(my : OK/p→ OK/p).

Thus (4.6) becomes

(4.7) Tr(OK/pe)/Fp(y) = eTr(OK/p)/Fp(y)

for any y ∈ OK , so (4.5) is true if and only if eTr(OK/p)/Fp(y) = 0 for all y ∈ OK/p. Since
OK/p is a finite field, the trace map from OK/p to Fp is not identically 0, so (4.5) holds if
and only if e = 0 in Fp, i.e., p | e. �

Up to now the fact that the prime numbers dividing disc(K) are the ramified primes in
K hasn’t been used (outside of Example 1.1). Theorem 4.8 leads to a new proof of that
result.

Corollary 4.9. The prime factors of disc(K) are the primes in Q that ramify in K.

Proof. Since |disc(K)| = N(DK), if p is a prime dividing disc(K) then DK must have a
prime ideal factor whose norm is a power of p, which means (p) is divisible by a prime factor
of DK , so p ramifies in K. Conversely, if p ramifies in K then DK is divisible by a prime
ideal factor of (p), so N(DK) is divisible by p. �

Corollary 4.10. Write pOK = pe11 · · · p
eg
g and fi = f(pi|p). If no ei is a multiple of p then

the multiplicity of p in disc(K) is

(e1 − 1)f1 + · · ·+ (eg − 1)fg = n− (f1 + · · ·+ fg).

If some ei is a multiple of p then the multiplicity of p in disc(K) is larger than this amount.
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Proof. The multiplicity of p in disc(K) is determined by the multiplicities of the pi’s in DK ,
since the norm of the different is the discriminant (in absolute value). By Theorem 4.8,

pe1−11 · · · peg−1g is a factor of DK . Applying the ideal norm, p(e1−1)f1+···+(eg−1)fg is a factor
of disc(K). If no ei is a multiple of p then pi appears in DK with multiplicity ei− 1, so this
power of p is the full power of p in disc(K). If some ei is a multiple of p then pi appears in
DK with multiplicity larger than ei− 1, so the p-multiplicity of disc(K) is larger than what
we just computed. �

Example 4.11. In Q(
√

10), the prime numbers that ramify are 2 and 5: (2) = p22 and

(5) = p25. By Example 4.4, the different of Q(
√

10)/Q is D = (2
√

10) = p32p5. The
multiplicity of p5 in D is e(p5|5)− 1 = 1, and the multiplicity of p2 is at least e(p2|2) = 2,
which is consistent with Theorem 4.8 since e(p5|5) is not a multiple of 5 and e(p2|2) is a
multiple of 2. Notice the p2-multiplicity in D is in fact greater than e(p2|2).

Example 4.12. Let K = Q(α), where α3−α−1 = 0. Since OK = Z[α] and |disc(K)| = 23,
DK has norm 23. Therefore DK is a prime ideal. Since (23) = pq2 and q must divide DK by
Theorem 4.8, DK = q. The multiplicity of q in the different is 1 = e(q|23)− 1, as expected.

Example 4.13. Let K = Q( 3
√

2), so Z[ 3
√

2] ⊂ OK . We will use Theorem 4.8 to prove OK =
Z[ 3
√

2]. Since disc(Z[ 3
√

2]) = [OK : Z[ 3
√

2]]2 disc(OK) and disc(Z[ 3
√

2]) = −108 = −4 · 27, it
suffices to show |disc(OK)| = 108.

The only prime factors of 108 are 2 and 3, so the only primes that can ramify in K are
2 and 3. The polynomials T 3 − 2 and (T − 1)3 − 2 = T 3 − 3T 2 + 3T − 3 are Eisenstein at
2 and 3 with roots generating K, so both 2 and 3 are totally ramified in OK : (2) = p3 and
(3) = q3. By Theorem 4.8, DK is divisible by p2q3. Taking norms, disc(OK) is divisible
by 22 · 33 = 108. We already knew disc(OK) is a factor of 108, so |disc(OK)| = 108 and
OK = Z[ 3

√
2] (and DK = p2q3).

Example 4.14. If p has exactly one prime lying over it, say (p) = pe, then DK is divisible

by pe−1, so disc(K) is divisible by N(p)e−1 = pf(e−1). If e 6≡ 0 mod p then pf(e−1) is the
exact power of p in disc(K).

Example 4.15. Let K = Q( 3
√

175). Using our knowledge of the multiplicity of primes in
the discriminant, based on the connection between the different and discriminant, we will
determine OK and then prove OK does not have a power basis.

View K as a subfield of R, so there is no ambiguity about the meaning of cube roots.

Set α = 3
√

175. Since 175 = 52 · 7, K also contains
3
√

5 · 72 = 35/α. Set β =
3
√

5 · 72. The
minimal polynomials for α and β over Q are T 3−52 ·7 and T 3−5 ·72, which are Eisenstein
at 5 and 7, so 5 and 7 are both totally ramified in OK : (5) = p3 and (7) = q3. Therefore
DK is divisible by p3−1q3−1 = p2q2, so disc(OK) is divisible by N(p2q2) = 52 · 72. Moreover,
(T + 1)3 − 175 = T 3 + 3T 2 + 3T − 174 is Eisenstein at 3, so 3 is totally ramified in K:
(3) = p33. Since e(p3|3) is a multiple of 3, disc(OK) is divisible by 33, not just 32, so disc(OK)
is a multiple of 33 · 52 · 72.

The lattice Z + Zα+ Zβ lies inside OK and is a ring:

(4.8) α2 = 5β, β2 = 7α, αβ = 35.
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Using these equations and the formulas TrK/Q(α) = 0 and TrK/Q(β) = 0, the matrix of
trace products for the Q-basis {1, α, β} of K is 3 0 0

0 0 35 · 3
0 35 · 3 0

 ,

whose determinant is −33 · 52 · 72. Therefore

−33 · 52 · 72 = disc(Z + Zα+ Zβ) = [OK : (Z + Zα+ Zβ)]2 disc(OK).

Since we know disc(OK) is a multiple of 33 · 52 · 72, the index [OK : (Z + Zα + Zβ)] must
be 1, so OK = Z + Zα+ Zβ and thus K has discriminant −335272 = −33075.

We will now show in two ways that OK does not have a power basis.
Method 1. For each γ ∈ OK − Z we will show disc(Z[γ]) 6= disc(OK) From the com-

putation of OK , we can write γ = a+ bα + cβ with integers a, b, and c, where b and c are
not both 0. Using (4.8), the matrix for multiplication by γ relative to the ordered Z-basis
1, α, β is

(4.9) [mγ ] =

 a 35c 35b
b a 7c
c 5b a


Computing powers of this matrix in PARI we get

TrK/Q(γ) = 3a, TrK/Q(γ2) = 3a2 + 210bc, TrK/Q(γ3) = 3a3 + 525b3 + 735c3 + 630abc,

and

TrK/Q(γ4) = 3a4 + 2100ab3 + 2940ac3 + 22050b2c2 + 1260a2bc,

so

disc(Z[γ]) = det

 TrK/Q(1) TrK/Q(γ) TrK/Q(γ2)
TrK/Q(γ) TrK/Q(γ2) TrK/Q(γ3)
TrK/Q(γ2) TrK/Q(γ3) TrK/Q(γ4)

 = −335272(5b3 − 7c3)2.

Since −335272 is the discriminant of K, [OK : Z[γ]] = |5b3 − 7c3|. Therefore this index is
1 if and only if 5b3 − 7c3 = ±1, which implies 5b3 ≡ ±1 mod 7, but 5 mod 7 is not a cube.
We have a contradiction.

Method 2. We will show the different ideal DK is not principal, so OK can’t have the
form Z[γ] by Theorem 4.3.

We already saw that disc(K) = −335272 and (3) = p33, (5) = p3, and (7) = q3. Since
N(DK) = | disc(K)| = 335272, DK = p33p

2q2. Since (β)3 = (245) = (5)(7)2 = p3q6 we get
(β) = pq2, so DK = (3)(β)p (also DK = (3)(α)q). We will prove p is not principal, so DK

is not principal.
The ideal norm of p is 5, so to show p is not principal it suffices (and actually is equivalent)

to show that no γ in OK has norm ±5. Write γ = a+ bα+ cβ with a, b, c ∈ Z. Using (4.9),

NK/Q(γ) = det(mγ) = a3 + 175b3 + 245c3 − 105abc.

Set this equal to ±5 and reduce modulo 7: the coefficients 175, 245, and 105 are multiples
of 7, so

±5 = a3 mod 7.

This has no solution for a in Z/(7), so we have a contradiction.
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The reasoning in Example 4.15 can be generalized: for distinct primes p and q not equal
to 3 such that p2q ≡ 1 mod 3 and p2q 6≡ 1 mod 9, and p is not a cube in Z/(q), the cubic

field Q( 3
√
p2q) has a different ideal that is not principal. Examples besides (p, q) = (5, 7)

are (p, q) = (11, 7), (17, 7), and (2, 13); that last example is Q( 3
√

52). I learned about this
type of construction from [2, pp. 460–462] and [3, Exer. 10B, pp. 101-102].

Theorem 4.8 gives us an exact formula for the multiplicity of p in DK if e(p|p) 6≡ 0 mod p,
but not if e(p|p) ≡ 0 mod p. Ramification when e(p|p) 6≡ 0 mod p is generally easier to
study than when e(p|p) ≡ 0 mod p. For this reason, when e(p|p) 6≡ 0 mod p we say p is
tamely ramified over p, and when e(p|p) ≡ 0 mod p we say p is wildly ramified over p. If
every prime over p in K is tamely ramified then we say p is tamely ramified in K. Any
unramified prime is tamely ramified, but ramified primes can also be tamely ramified. For
example, 2 is tamely ramified in Q( 3

√
2) ((2) = p3), but 2 is wildly ramified in Q(γ), where

γ3 + γ + 4 = 0 ((2) = pq2).
Upper and lower bounds for the multiplicity of a nonzero prime ideal p in DK are

e− 1 ≤ ordp(DK) ≤ e− 1 + e ordp(e),

where p|p and e = e(p|p). The lower bound was proved by Dedekind (Theorem 4.8),
who conjectured the upper bound, which was later proved by Hensel as one of the first
applications of p-adic fields to number theory.

In the ideal class group of K, Hecke proved the ideal class of DK is always a square. For
a proof in the number field and function field settings, see [1].
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