RECOGNIZING GALOIS GROUPS S_n AND A_n

KEITH CONRAD

1. Introduction

If $f(X) \in K[X]$ is a separable irreducible polynomial of degree n and G_f is its Galois group over K (the Galois group of the splitting field of $f(X)$ over K), then the group G_f can be embedded into S_n by writing the roots of $f(X)$ as r_1, \ldots, r_n and identifying each automorphism in the Galois group with the permutation it makes on the r_i's.

Whether thinking about G_f as a subgroup of S_n in this way really helps us compute G_f depends on how well we can conjure up elements of G_f as permutations of the roots.

For instance, when $K = \mathbb{Q}$ there is a fantastic theorem of Dedekind that tells us about the Galois group as a permutation group if we factor $f(X)$ mod p for different prime numbers p. If

$$f(X) \equiv \pi_1(X) \cdots \pi_m(X) \mod p$$

where the $\pi_i(X)$'s are different monic irreducibles mod p, with $d_i = \deg \pi_i$, then Dedekind’s theorem says there is an element in the Galois group of $f(X)$ over \mathbb{Q} that permutes the roots with cycle type (d_1, \ldots, d_m).

Example 1.1. Let $f(X) = X^6 + X^4 + X + 3$. Here are the factorizations of $f(X)$ modulo the first few primes:

- $f(X) \equiv (X + 1)(X^2 + X + 1)(X^3 + X + 1) \mod 2$,
- $f(X) \equiv X(X + 2)(X^4 + X^3 + 2X^2 + 2X + 2) \mod 3$,
- $f(X) \equiv (X + 3)^2(X^4 + 4X^3 + 3X^2 + X + 2) \mod 5$,
- $f(X) \equiv (X^2 + 5X + 2)(X^4 + 2X^3 + 3X^2 + 2X + 5) \mod 7$,
- $f(X) \equiv (X + 6)(X^5 + 5X^4 + 4X^3 + 9X^2 + X + 6) \mod 11$,
- $f(X) \equiv (X^2 + 8X + 1)(X^2 + 9X + 10)(X^3 + 9X + 12) \mod 13$.

From the factorizations modulo 2 and 3, Dedekind’s theorem says G_f, as a subgroup of S_6, contains permutations of cycle type $(1, 2, 3)$ and $(1, 1, 4)$ (namely a 4-cycle). The factorization mod 5 does not tell us anything by Dedekind’s theorem, because there is a multiple factor. From the later primes, we see G_f contains permutations of the roots with cycle types $(2, 4)$, $(1, 5)$ (a 5-cycle), and $(2, 2, 2)$.

Actually, we need to know first that $f(X)$ is irreducible over \mathbb{Q} before any of that is justified. Irreducibility can be read off from the factorizations above, since a factorization over \mathbb{Q} can be scaled to a (monic) factorization over \mathbb{Z}. If $f(X)$ were reducible over \mathbb{Q} it would have a factor in $\mathbb{Z}[X]$ of degree 1, 2, or 3. From $p = 7$ (or 13) we see there is no linear factor. From $p = 11$ there is no quadratic factor. From $p = 3$ (or 5 or 7 or 11 or 13) there is no cubic factor.

It is important to remember that Dedekind’s theorem does not correlate any information about the permutations coming from different primes. For instance, permutations in G_f
associated to the factorizations mod 2 and 11 each fix a root, but we can’t be sure if these are the same root.

Example 1.2. Let \(f(X) = X^6 + 15X^2 + 18X - 20 \). Here are its irreducible factorizations modulo small primes:

\[
\begin{align*}
f(X) &\equiv X^2(X + 1)^4 \pmod{2}, \\
f(X) &\equiv (X^2 + 1)^3 \pmod{3}, \\
f(X) &\equiv X(X + 3)^5 \pmod{5}, \\
f(X) &\equiv (X + 5)(X + 6)(X^2 + 5X + 5)^2 \pmod{7}, \\
f(X) &\equiv (X + 1)(X^5 + 10X^4 + X^3 + 10X^2 + 5X + 2) \pmod{11}, \\
f(X) &\equiv (X^3 + 2X^2 + 4X + 10)(X^3 + 11X^2 + 11) \pmod{13}.
\end{align*}
\]

It is left to the reader to explain from these why \(f(X) \) is irreducible over \(\mathbb{Q} \). We can’t determine anything about \(G_f \) from the factorizations at any \(p \leq 7 \) since they all have multiple factors. From \(p = 11 \) and \(p = 13 \), we see \(G_f \) contains permutations of the roots of \(f(X) \) with cycle types \((1, 5)\) (a 5-cycle) and \((3, 3)\).

Once we know some cycle types of permutations in \(G_f \), as a subgroup of \(S_n \), we can often prove the Galois group has to be \(S_n \) or \(A_n \) because \(G_f \) is a transitive subgroup of \(S_n \) (any root of \(f(X) \) can be carried to any other root by the Galois group, which is what being transitive means) and there are several theorems in group theory saying a transitive subgroup of \(S_n \) containing certain cycle types has to be \(A_n \) or \(S_n \).

2. Statement of Theorems and Some Applications

Here are theorems giving conditions under which a transitive subgroup of \(S_n \) is \(A_n \) or \(S_n \).

Theorem 2.1. For \(n \geq 2 \), a transitive subgroup of \(S_n \) that contains a transposition and a \(p \)-cycle for some prime \(p > n/2 \) is \(S_n \).

Theorem 2.2. For \(n \geq 3 \), a transitive subgroup of \(S_n \) that contains a 3-cycle and a \(p \)-cycle for some prime \(p > n/2 \) is \(A_n \) or \(S_n \).

We will illustrate these theorems with examples in \(\mathbb{Q}[X] \). Whether or not the discriminant of an irreducible polynomial in \(\mathbb{Q}[X] \) is a square tells us when its Galois group is in \(A_n \) or not. So if we want to check whether the Galois group is big (\(A_n \) or \(S_n \)), first determine if the discriminant is a square, which tells us which group (\(A_n \) or \(S_n \)) to aim for. Theorems 2.1 and 2.2 are directly applicable to Galois groups over \(\mathbb{Q} \) using Dedekind’s theorem.

Example 2.3. Let \(f(X) = X^6 + X^4 + X + 3 \), as in Example 1.1. Its discriminant is \(-13353595 < 0 \), which is not a square and we’ll show the Galois group over \(\mathbb{Q} \) is \(S_6 \). We saw in Example 1.1 that the Galois group contains permutations of the roots with cycle types \((1,2,3)\), \((1,1,4)\), \((2,4)\), \((1,5)\), and \((2,2,2)\). In particular, there is a 5-cycle in the Galois group. By Theorem 2.1 (with \(n = 6 \) and \(p = 5 \)), \(G_f = S_6 \) provided we show \(G_f \) contains a transposition. None of the cycle types we found is a transposition, but the third power of a permutation with cycle type \((1,2,3)\) is a transposition (why?). Therefore \(G_f \) contains a transposition.

The cycle types we used, \((1,2,3)\) and \((1,5)\), came from the factorizations of \(f(X) \) mod 2 and \(f(X) \) mod 11. In principle the “right” way to show \(G_f \) contains a transposition is not by the trick of cubing a permutation of type \((1,2,3)\), but by finding a prime \(p \) at which
Theorem 2.2 tells us G_Q over \mathbb{Q} irreducible over \mathbb{Q}.

Example 2.5. Let $f(X) = X^7 - X - 1$. The first few factorizations of $f(X) \mod p$ are as follows:

$$
\begin{align*}
 f(X) &\equiv X^7 + X + 1 \mod 2, \\
 f(X) &\equiv (X^2 + X + 2)(X^5 + 2X^4 + 2X^3 + 2X + 1) \mod 3, \\
 f(X) &\equiv (X + 3)(X^6 + 2X^5 + 4X^4 + 3X^3 + X^2 + 2) \mod 5.
\end{align*}
$$

Since $f(X) \mod 2$ is irreducible, $f(X)$ is irreducible over \mathbb{Q}. Its discriminant is $-776887 < 0$, so we’ll try to show the Galois group over \mathbb{Q} is S_7. The mod 2 factorization says the Galois group contains a 7-cycle on the roots. The factorization mod 3 gives us a permutation in the Galois group over \mathbb{Q} whose square is a 3-cycle and whose fifth power is a transposition. Since $5 > 7/2$, this means $G_f = S_7$ by Theorem 2.1. (The first prime p such that $f(X) \mod p$ has a factorization of “transposition type” $(2,1,1,1,1,1)$ is 191, so it’s faster to use the power method on the $(2,5)$-permutation to find a transposition in the Galois group.)

Example 2.6. Let $f(X) = X^6 + 15X^2 + 18X - 20$. From Example 1.2, we know $f(X)$ is irreducible over \mathbb{Q} and its factorization mod 11 gives us a 5-cycle in the Galois group over \mathbb{Q}. Since $\text{disc } f = 2893401000000 = 1701000 \times 2$ and $G_f \subset A_6$. To prove $G_f = A_6$ using Theorem 2.2, we just need to find a 3-cycle. The factorization mod 13 in Example 1.2 gives us an element of order 3, but not a 3-cycle. We get a 3-cycle in G_f from the factorization mod 17:

$$
 f(X) \equiv (X + 2)(X + 9)(X + 10)(X^3 + 13X^2 + 7X + 15) \mod 17.
$$

Example 2.7. Let $f(X) = X^7 - 56X + 48$. It’s irreducible mod 5, so $f(X)$ is irreducible over \mathbb{Q} and G_f contains a 7-cycle on the roots. The discriminant is 265531392, so $G_f \subset A_7$. Theorem 2.2 tells us $G_f = A_7$ once we know there is a 3-cycle in G_f. The factorization

$$
 f(X) \equiv (X^2 + 9X + 5)(X^2 + 17X + 17)(X^3 + 20X^2 + 18X + 3) \mod 23
$$

gives us a permutation in the Galois group of cycle type $(2,2,3)$, whose square is a 3-cycle.
3. Proofs of Theorems

Proof. (of Theorem 2.1) This argument is adapted from [1]. Let G be a transitive subgroup of S_n containing a transposition and a p-cycle for some prime $p > n/2$. For a and b in \{1, 2, \ldots, n\}, write $a \sim b$ if $(ab) \in G$ (that is, either $a = b$ so (ab) is the identity permutation, or $a \neq b$ and there is a 2-cycle in G exchanging a and b). Let’s check \sim is an equivalence relation on \{1, 2, \ldots, n\}.

Reflexive: Clearly $a \sim a$ for any a.

Symmetric: This is clear.

Transitive: Suppose $a \sim b$ and $b \sim c$. We want to show $a \sim c$. We may assume a, b, and c are distinct (otherwise the task is trivial). Then (ab) and (bc) are transpositions in G, so $(ab)(bc)(ab) = (ac)$ is in G.

Our goal is to show there is only one equivalence class: if all elements of \{1, 2, \ldots, n\} are equivalent to each other than any transposition (ab) lies in G, so $G = S_n$.

The group G preserves the equivalence relation: if $a \sim b$ then $ga \sim gb$ for any g in G. (For $g \in G$ and $1 \leq i \leq n$, we write gi for $g(i)$.) This is clear if $a = b$. If $a \neq b$ then (ab) is a transposition in G and its conjugate $g(ab)g^{-1}$ is also in G. It’s a general fact that the conjugate of any cyclic permutation is a cycle of the same length. More precisely, for any cyclic permutation $(a_1 a_2 \ldots a_k)$ in S_n and any π in S_n,

$$\pi(a_1 a_2 \ldots a_k)\pi^{-1} = (\pi a_1 \pi a_2 \ldots \pi a_k).$$

Therefore $g(ab)g^{-1} = (ga \ gb)$, so the transposition $(ga \ gb)$ is also in G.

Break up G into equivalence relations for \sim. Let $[a]$ be the equivalence class of a. The group G acts on equivalence classes by $g[a] = [ga]$; we already showed this is well-defined. Since G acts transitively on \{1, 2, \ldots, n\}, it acts transitively on the equivalence classes: for any a and b, there is some $g \in G$ such that $ga = b$, so $g[a] = [b]$. Moreover, the action of g provides a function $[a] \to [b]$ given by $x \mapsto gx$ (if $x \sim a$ then $gx \sim ga = b$) and the action of g^{-1} provides a function $[b] \to [a]$ given by $x \mapsto g^{-1}x$ that is inverse to the action of g sending $[a]$ to $[b]$. Therefore all equivalence classes have the same size.

Let M be the common size of the equivalence classes and let N be the number of equivalence classes, so $n = MN$. Since G contains a transposition and the two numbers in a transposition in G are equivalent, $M \geq 2$. We want to show $N = 1$. By hypothesis there is a p-cycle in G. Call it g. The group $\langle g \rangle$ has order p, so the orbits of $\langle g \rangle$ on the equivalence classes each have size 1 or p. (When a finite group acts on a set, all orbits have order dividing the order of the group, by the orbit–stabilizer formula.) If some orbit has size p, say $[a], [ga], \ldots, [g^{p-1}a]$, then $N \geq p$ so

$$n = MN \geq Mp \geq 2p > 2 \frac{n}{2} = n,$$

a contradiction. Therefore all $\langle g \rangle$-orbits have size 1, so for every $a \in \{1, 2, \ldots, n\}$ we have $[ga] = [a]$, which means $a \sim ga$ for all a. Since g is a p-cycle, by relabeling (which amounts to replacing G with a conjugate subgroup in S_n) we can assume $g = (12\ldots p)$. That means $2 = g(1), 3 = g(2), \ldots, p = g(p-1)$, so because $a \sim ga$ for all a we have

$$1 \sim 2 \sim 3 \sim \cdots \sim p,$$

so the equivalence class $[1]$ has size at least p. Therefore $M \geq p$ so

$$n = MN \geq pN > \frac{n}{2}N,$$

hence $N < 2$, so $N = 1$.

\blacksquare
It is natural to ask how restrictive the hypotheses of the Theorem 2.1 are. Does every S_n for $n \geq 2$ contain a p-cycle for some prime $p > n/2$? If there were a prime p satisfying $n/2 < p \leq n$ then we could use the p-cycle $(1\ldots p)$. It turns out such a prime always exists: this can be checked directly for $n = 3, 4,$ and 5, while for $n \geq 6$ we can use Bertrand’s postulate (proved by Chebyshev), which says that for any integer $m \geq 4$ there is a prime number p satisfying $m < p < 2m - 2$. Let $m = \lceil n/2 \rceil + 1$, which is ≥ 4 for $n \geq 6$. Then $m > n/2$ and $2m - 2 = 2\lceil n/2 \rceil \leq n$, so $m < p < 2m - 2 \implies n/2 < p < n$.

Proof. (of Theorem 2.2) Let G be a transitive subgroup of S_n containing a 3-cycle and a p-cycle for some prime $p > n/2$. Since any transitive subgroup of S_3 is A_3 or S_3, we can assume $n \geq 4$. Then $p > n/2 \geq 2$, so p is odd. A cycle with an odd number of terms has even sign (think about 3-cycles, or even more simple 1-cycles!), so any p-cycle is even. We will show G contains a set of 3-cycles that generates A_n, so G is A_n or S_n.

For a and b in $\{1, 2, \ldots, n\}$, set $a \sim b$ if $a = b$ or there is a 3-cycle (abc) in G. We will check this is an equivalence relation on $\{1, 2, \ldots, n\}$.

- **Reflexive:** Clear.
- **Symmetric:** If $a \neq b$ and $a \sim b$ then some 3-cycle (abc) is in G, so its inverse $(abc)^{-1} = (bac)$ is in G, so $b \sim a$.
- **Transitive:** This will be trickier than the transitivity proof in Theorem 2.1 because we will have 5 parameters to keep track of and need to worry about the possibility that some of them may be equal.

Suppose $a \sim b$ and $b \sim c$. We want to show $a \sim c$. It is easy if any of these three numbers are equal, so we may assume a, b, and c are all distinct. Then (abd) and (bce) are in G for some d and e with $d \neq a$ or b and $e \neq b$ or c. It might happen that $d = e$ or $d = c$ or $e = a$. To show G contains a 3-cycle $(ac*)$, we need to take separate cases to deal with these possible equalities.

Case 1: a, b, c, d, e are distinct. The conjugate
\[
(bce)(abd)(bce)^{-1} = (bce)(abd)(bec) = (acd)
\]
is in G, so $a \sim c$.

Case 2: $d = e$, so a, b, c, d are distinct. Here (abd) and (bcd) are in G, so G contains
\[
(bcd)(abd)(bcd)^{-1} = (bcd)(abd)(bdc) = (acb).
\]

Case 3: $d = c$ and $e \neq a$, so a, b, c, e are distinct. Here (abc) and (bce) are in G, so G contains
\[
(bce)(abc)(bce)^{-1} = (bce)(abc)(bec) = (ace).
\]

Case 4: $d \neq c$ and $e = a$, so a, b, c, d are distinct. Here (abd) and (bca) are in G, so G contains
\[
(abd)(bca)^{-1} = (abd)(bac) = (acd).
\]

Case 5: $d = c$ and $e = a$, so we only have three numbers $a, b,$ and c with (abc) and (bca) in G. Of course $(bca) = (abc)$, so all we have to work with here is (abc). Invert it: G contains
\[
(abc)^{-1} = (acb).
\]

Thus $a \sim c$, so \sim is transitive.

This equivalence relation is preserved by G: if $g \in G$ and $a \sim b$ then $ga \sim gb$. This is obvious if $a = b$. If $a \neq b$ then some 3-cycle (abc) is in G, so the conjugate
\[
g(abc)g^{-1} = (ga\ gb \ gc)\]
is in G. Therefore $ga \sim gb$.

For $a \in \{1, 2, \ldots, n\}$, write $[a]$ for the equivalence class of a. The group G acts on equivalence classes by $g[a] = [ga]$ and all equivalence classes have the same size. Let M be the common size of the equivalence classes and N be the number of equivalence classes, so $n = MN$. Since G contains a 3-cycle and the numbers in a 3-cycle in G are equivalent, $M \geq 3$.

Let $g \in G$ be a p-cycle, so the orbits of (g) on the equivalence classes have size 1 or p. We will show all the sizes are 1. If there is an orbit of size p then $N \geq p$, so

$$n = MN \geq Mp \geq 3p > \frac{3n}{2} > n,$$

a contradiction. Thus (g) fixes all the equivalence classes, so $a \sim ga$ for all $a \in \{1, 2, \ldots, n\}$. Therefore, as in the proof of Theorem 2.1, $M \geq p$ so

$$n = MN \geq pN > \frac{n}{2}N,$$

so $N < 2$, which means $N = 1$. Thus any $a \neq b$ belongs to a 3-cycle (abc) in G. This is not saying all 3-cycles are in G: it says for any two distinct numbers a and b in $\{1, 2, \ldots, n\}$ there is some 3-cycle $(abc) \in G$. We will show the 3-cycles

$$(123), (124), \ldots, (12n)$$

are all in G, and this set of 3-cycles is known to generate A_n.

If $n = 3$ then the hypothesis that G contains a 3-cycle means G contains A_3, so we may assume $n \geq 4$.

Since $1 \sim 2$ there is some $(12c)$ in G where c is not 1 or 2. For every $d \neq c$, 1, or 2, we want to show $(12d) \in G$. Since $c \sim d$, some 3-cycle (cde) is in G, where e is not c or d. The numbers 1, 2, c, and d are distinct by hypothesis, as are c, d, and e, but e might equal 1 or 2. To show $(12d)$ is in G we take cases.

Case 1: $e \neq 1$ or 2, so 1, 2, c, d, e are distinct. The conjugate

$$(cde)(12c)(cde)^{-1} = (cde)(12c)(ced) = (12d)$$

is in G.

Case 2: $e = 1$. Here $(12c)$ and $(cd1)$ are in G, so G contains

$$(cd1)(12c) = (12d).$$

Case 3: $e = 2$. Here $(12c)$ and $(cd2)$ are in G, so G contains

$$(12c)(cd2)^{-1} = (12c)(c2d) = (12d).$$

Here are some other theorems in group theory in the spirit of Theorem 2.1.

Theorem 3.1. For $n \geq 2$, a transitive subgroup of S_n that contains a transposition and an $(n - 1)$-cycle is S_n.

Proof. Let G be a transitive subgroup of S_n containing an $(n - 1)$-cycle. By suitable labeling, G contains the particular $(n - 1)$-cycle $\sigma = (12\ldots n - 1)$. This cycle fixes n and moves all the other numbers around. We can’t say for sure which transpositions are in G, only that some transposition is in it. Say (ab) is a transposition in G. For any $g \in G$, G contains the conjugate transposition $g(ab)g^{-1} = (ga gb)$. Since G is a transitive subgroup, there is a $g \in G$ such that $gb = n$. Necessarily $ga \neq gb$, so G contains a transposition $\tau = (in)$ where $i = ga \in \{1, 2, \ldots, n - 1\}$.

For $j = 1, 2, \ldots, n$, G contains the transposition
\[\sigma^j \tau \sigma^{-j} = (\sigma^j(i) \sigma^j(n)) = (i + j, n). \]
Therefore G contains $(1n), (2n), \ldots, (n-1n)$. For any $i \neq j$ that also don’t equal n, G contains
\[(in)(jn)(in) = (ij). \]
Therefore G contains all transpositions, so $G = S_n$.

It’s left to the reader to return to Examples 2.3 and 2.4 and solve them using Theorem 3.1 in place of Theorem 2.1. For large n, Theorem 2.1 is more flexible than Theorem 3.1 since it only requires you find a p-cycle with some prime $p > n/2$ rather than specifically an $(n-1)$-cycle.

Theorem 3.2. For $n \geq 2$, a transitive subgroup of S_n that contains a transposition and has a generating set of cycles of prime order is S_n.

Proof. See [3, pp. 139–140].

Theorem 3.2 appears to be less simple to apply to specific examples than the other theorems, because it requires knowing a generating set of cycles of prime order in the Galois group. It’s one thing to know a few cycle types in G_f, by Dedekind’s theorem, but how could we know generating cycle types in G_f before we know G_f? Using a lot more mathematics, there really are situations where Theorem 3.2 can be applied to compute Galois groups over \mathbb{Q}. For instance, Osada [2] showed the Galois group of $X^n - X - 1$ over \mathbb{Q} is S_n using the special case of Theorem 3.2 for cycles of prime order 2: a transitive subgroup of S_n generated by transpositions must be S_n.

References

