
CONSTRUCTING ALGEBRAIC CLOSURES

KEITH CONRAD

Let K be a field. We want to construct an algebraic closure of K, i.e., an algebraic
extension of K which is algebraically closed. It will be built as the quotient of a polynomial
ring in a very large number of variables.

For each nonconstant monic polynomial f(X) in K[X], let its degree be nf and let
tf,1, . . . , tf,nf

be independent variables. Let A = K[{tf,i}] be the polynomial ring generated
over K by independent variables doubly indexed by every nonconstant monic f ∈ K[X]
and 1 ≤ i ≤ nf . This is a very large polynomial ring containing K.

Let I be the ideal in A generated by the coefficients of all the difference polynomials

f(X)−
nf∏
i=1

(X − tf,i) ∈ A[X]

as f runs over nonconstant monic polynomials in K[X]. Working modulo I we have f(X) ≡∏
i(X − tf,i), so f(X) splits into linear factors in (A/I)[X]. We want to use a maximal

ideal in place of I since working modulo a maximal ideal would give a complete splitting of
every f(X) from K[X] over a field.

Lemma 1. The ideal I is proper: 1 6∈ I.

Proof. This will follow from the existence of a splitting field of any nonconstant polynomial
in K[X].

Suppose 1 ∈ I. Then we can write 1 as a finite sum
∑m

j=1 ajcj , where cj ∈ I and aj ∈ A.
Each cj is a coefficient in some difference

(1) fj(X)−
nj∏
i=1

(X − tfj ,i),

where fj(X) is monic in K[X] and nj = deg(fj). There is a (finite) field extension L/K

in which the finitely many fj ’s all split completely, say fj(X) =
∏nj

i=1(X − rj,i) in L[X].
(Some numbers in the list rj,1, . . . , rj,nj might be repeated.) We can use the roots rj,i
of f1(X), . . . , fm(X) to construct a ring homomorphism ϕ from A = K[{tf,i}] to L by
substitution: ϕ fixes K, ϕ(tfj ,i) = rj,i for 1 ≤ i ≤ nj , and ϕ(tf,i) = 0 if f is not one of the
fj ’s. Extend ϕ to a homomorphism A[X]→ L[X] by acting on coefficients. The polynomial
in (1) is mapped by ϕ to

fj(X)−
nj∏
i=1

(X − rfj ,i) = 0 in L[X],

so every coefficient in (1) is mapped by ϕ to 0 in L. In particular, ϕ(cj) = 0. Thus ϕ sends
the equation 1 =

∑m
j=1 ajcj in A to the equation 1 = 0 in L, and that is a contradiction. �

Since I is a proper ideal, Zorn’s lemma guarantees that I is contained in some maximal
ideal m in A. (I suspect I itself is not a maximal ideal, but I don’t have a proof of that.)
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The quotient ring A/m = K[{tf,i}]/m is a field and the natural composite homomorphism
K → A→ A/m of rings let us view the field A/m as an extension of K (ring homomorphisms
out of fields are always injective).

Theorem 2. The field A/m is an algebraic closure of K.

Proof. For any nonconstant monic f(X) ∈ K[X] we have f(X)−
∏nf

i=1(X − tf,i) ∈ I[X] ⊂
m[X], so in (A/m)[X] we have f(X) =

∏
i(X − tf,i), where tf,i denotes tf,i mod m. Each

tf,i is algebraic over K (being a root of f(X)) and A is generated as a ring over K by the
tf,i’s, so A/m is generated as a ring over K by the tf,i’s. Therefore A/m is an algebraic
extension field of K in which every nonconstant monic in K[X] splits completely.

We will now show A/m is algebraically closed, and thus it is an algebraic closure of K.
Set F = A/m. It suffices to show every monic irreducible π(X) in F [X] has a root in F .
We have already seen that any nonconstant monic polynomial in K[X] splits completely in
F [X], so let’s show π(X) is a factor of some monic polynomial in K[X]. There is a root α
of π(X) in some extension of F . Since α is algebraic over F and F is algebraic over K, α is
algebraic over K. That implies some monic f(X) in K[X] has α as a root. The polynomial
π(X) is the minimal polynomial of α in F [X], so π(X) | f(X) in F [X]. Since f(X) splits
completely in F [X], α ∈ F . �

Our construction of an algebraic closure of K is done, but we want to compare it with
another method to put the construction in context. The idea of building an algebraic
closure of K by starting with a large polynomial ring over K whose variables are indexed
by polynomials inK[X] goes back to Emil Artin. He used a large polynomial ring (somewhat
smaller than the ring K[{tf,i}] we started with above) modulo a suitable maximal ideal to
obtain an algebraic extension K1/K such that every nonconstant polynomial in K[X] has
a root in K1 (not, a priori, that they all split completely in K1[X]). Then he iterated
this construction with K1 in place of K to get a new algebraic extension K2/K1, and so
on, and proved that the union

⋃
n≥1Kn (or, more rigorously, the direct limit of the Kn’s)

contains an algebraic closure of K [2, pp. 544-545]. With more work, treating separately
characteristic 0 and characteristic p, it can be shown [3] that Artin’s construction only needs
one step: K1 is an algebraic closure of K (so Kn = K1 for all n, which is not obvious in
Artin’s own proof). In other words, the following is true: if F/K is an algebraic extension
such that every nonconstant polynomial in K[X] has a root in F then every nonconstant
polynomial in F [X] has a root in F , so F is an algebraic closure of K. Theorem 2 and its
proof, due to B. Conrad, modifies Artin’s construction by using a larger polynomial ring
over K in order to adjoin to K in one step a full set of roots – not just one root – of each
nonconstant monic in K[X], rather than one root for each polynomial. This makes it easier
to prove the constructed field is an algebraic closure of K. A similar construction, using a
maximal ideal in a tensor product, is in [1, Prop. 4, p. A V 21].

At the end of the proof of Theorem 2, the polynomial f(X) in K[X] with α as a root
can be taken to be irreducible over K, so we could build an algebraic closure of K by
defining the ideal I using just the monic irreducible f(X) in K[X] rather than all monic
f(X) in K[X]; the proofs of Lemma 1 and Theorem 2 carry over with no essential changes
other than inserting the word “irreducible” in a few places. Finally, if we restrict the f in
the construction of I to run over the monic separable polynomials in K[X], or the monic
separable irreducible polynomials in K[X], then the field A/m turns out to be a separable
closure of K. The proof of Lemma 1 carries over with the fj being separable (or separable
irreducible), and in the proof of Theorem 2 two changes are needed: A/m is a separable
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algebraic extension of K since it would be generated as a ring over K by roots of separable
polynomials in K[X], and we need transitivity of separability instead of algebraicity (if
F/K is separable algebraic then any root of a separable polynomial in F [X] is separable
over K).
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