THE GAUSSIAN INTEGRAL
KEITH CONRAD

Let
\[I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} \, dx, \quad J = \int_{0}^{\infty} e^{-x^2} \, dx, \quad K = \int_{-\infty}^{\infty} e^{-\pi x^2} \, dx. \]
These numbers are positive, and \(J = I/(2\sqrt{2}) \) and \(K = I/\sqrt{2\pi} \).

Theorem. With notation as above, \(I = \sqrt{2\pi} \), or equivalently \(J = \sqrt{\pi/2} \), or equivalently \(K = 1 \).

We will give multiple proofs of this result. (Other lists of proofs are in [3] and [8].) The theorem is subtle because there is no simple antiderivative for \(e^{-\frac{1}{2}x^2} \) (or \(e^{-x^2} \) or \(e^{-\pi x^2} \)). For comparison, \(\int_{0}^{\infty} xe^{-\frac{1}{2}x^2} \, dx \) can be computed using the antiderivative \(-e^{-\frac{1}{2}x^2}\): this integral is 1.

1. **First Proof: Polar coordinates**

The most widely known proof uses multivariable calculus: express \(J^2 \) as a double integral and then pass to polar coordinates:

\[J^2 = \int_{0}^{\infty} e^{-x^2} \, dx \int_{0}^{\infty} e^{-y^2} \, dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} \, dx \, dy. \]

This is a double integral over the first quadrant, which we will compute by using polar coordinates. In polar coordinates, the first quadrant is \(\{(r, \theta) : r \geq 0 \text{ and } 0 \leq \theta \leq \pi/2\} \). Writing \(x^2 + y^2 = r^2 \) and \(dx \, dy = r \, dr \, d\theta \),

\[
\begin{align*}
J^2 &= \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} \, r \, dr \, d\theta \\
&= \int_{0}^{\infty} re^{-r^2} \, dr \cdot \int_{0}^{\pi/2} \, d\theta \\
&= -\frac{1}{2} e^{-r^2} \bigg|_{0}^{\infty} \cdot \frac{\pi}{2} \\
&= \frac{1}{2} \cdot \frac{\pi}{2} \\
&= \frac{\pi}{4}.
\end{align*}
\]

Taking square roots, \(J = \frac{\sqrt{\pi}}{2} \). This method is due to Poisson [8, p. 3].

2. **Second Proof: Another change of variables**

Our next proof uses another change of variables to compute \(J^2 \), but this will only rely on single-variable calculus. As before, we have

\[J^2 = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} \, dx \, dy, \]
but instead of using polar coordinates we make a change of variables \(x = yt \) with \(dx = y \, dt \), so
\[
J^2 = \int_0^\infty \int_0^\infty e^{-y^2(t^2+1)} y \, dt \, dy = \int_0^\infty \left(\int_0^\infty ye^{-y^2(t^2+1)} \, dy \right) \, dt.
\]
Since \(\int_0^\infty ye^{-ay^2} \, dy = \frac{1}{2a} \) for \(a > 0 \), we have
\[
J^2 = \int_0^\infty \frac{dt}{2(t^2 + 1)} = \frac{1}{2} \cdot \pi = \frac{\pi}{4},
\]
so \(J = \sqrt{\pi}/2 \). This approach is due to Laplace [6, pp. 94–96] and historically precedes the more familiar technique in the first proof above. We will see in our seventh proof that this was not Laplace’s first method.

3. Third Proof: Differentiating under the integral sign

For \(t > 0 \), set
\[
A(t) = \left(\int_0^t e^{-x^2} \, dx \right)^2.
\]
The integral we want to calculate is \(A(\infty) = J^2 \) and then take a square root.

Differentiating \(A(t) \) with respect to \(t \),
\[
A'(t) = 2 \int_0^t e^{-x^2} \, dx \cdot e^{-t^2} = 2e^{-t^2} \int_0^t e^{-x^2} \, dx.
\]
Let \(x = ty \), so
\[
A'(t) = 2e^{-t^2} \int_0^1 te^{-t^2y^2} \, dy = \int_0^1 2t e^{-(1+y^2)t^2} \, dy.
\]
The function under the integral sign is easily antidifferentiated with respect to \(t \):
\[
A'(t) = \int_0^1 \frac{\partial}{\partial t} \frac{e^{-(1+y^2)t^2}}{1 + y^2} \, dy = -\frac{d}{dt} \int_0^1 \frac{e^{-(1+y^2)t^2}}{1 + y^2} \, dy.
\]
Letting
\[
B(t) = \int_0^1 \frac{e^{-t^2(1+x^2)}}{1 + x^2} \, dx,
\]
we have \(A'(t) = -B'(t) \) for all \(t > 0 \), so there is a constant \(C \) such that
\[
(3.1) \quad A(t) = -B(t) + C
\]
for all \(t > 0 \). To find \(C \), we let \(t \to 0^+ \) in (3.1). The left side tends to \((\int_0^0 e^{-x^2} \, dx)^2 = 0 \) while the right side tends to \(-\int_0^1 \frac{dx}{1 + x^2} + C = -\pi/4 + C \). Thus \(C = \pi/4 \), so (3.1) becomes
\[
\left(\int_0^t e^{-x^2} \, dx \right)^2 = \frac{\pi}{4} - \int_0^1 \frac{e^{-t^2(1+x^2)}}{1 + x^2} \, dx.
\]
Letting \(t \to \infty \) in this equation, we obtain \(J^2 = \pi/4 \), so \(J = \sqrt{\pi}/2 \).

A comparison of this proof with the first proof is in [17].
4. **Fourth Proof: A volume integral**

Our next proof is due to T. P. Jameson [4] and it was rediscovered by A. L. Delgado [2]. Revolve the curve \(z = e^{-\frac{1}{2}x^2} \) in the \(xz \)-plane around the \(z \)-axis to produce the “bell surface” \(z = e^{-\frac{1}{2}(x^2+y^2)} \). See below, where the \(z \)-axis is vertical and passes through the top point, the \(x \)-axis lies just under the surface through the point 0 in front, and the \(y \)-axis lies just under the surface through the point 0 on the left. We will compute the volume \(V \) below the surface and above the \(xy \)-plane in two ways.

![Graph of the bell surface]

First we compute \(V \) by *horizontal slices*, which are discs: \(V = \int_0^1 A(z) \, dz \) where \(A(z) \) is the area of the disc formed by slicing the surface at height \(z \). Writing the radius of the disc at height \(z \) as \(r(z) \), \(A(z) = \pi r(z)^2 \). To compute \(r(z) \), the surface cuts the \(xz \)-plane at a pair of points \((x, e^{-\frac{1}{2}x^2}) \) where the height is \(z \), so \(e^{-\frac{1}{2}x^2} = z \). Thus \(x^2 = -2 \ln z \). Since \(x \) is the distance of these points from the \(z \)-axis, \(r(z)^2 = x^2 = -2 \ln z \), so \(A(z) = \pi r(z)^2 = -2\pi \ln z \). Therefore

\[
V = \int_0^1 -2\pi \ln z \, dz = -2\pi \left(z \ln z - z \right) \bigg|_0^1 = -2\pi \left(-1 - \lim_{z \to 0^+} z \ln z \right).
\]

By L’Hospital’s rule, \(\lim_{z \to 0^+} z \ln z = 0 \), so \(V = 2\pi \). (A calculation of \(V \) by shells is in [10].)

Next we compute the volume by *vertical slices* in planes \(x = \) constant. Vertical slices are scaled bell curves: look at the black contour lines in the picture. The equation of the bell curve along the
top of the vertical slice with x-coordinate x is $z = e^{-\frac{1}{2}(x^2+y^2)}$, where y varies and x is fixed. Then

$$V = \int_{-\infty}^{\infty} A(x) \, dx,$$

where $A(x)$ is the area of the x-slice:

$$A(x) = \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2+y^2)} \, dy = e^{-\frac{1}{2}x^2} \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} \, dy = e^{-\frac{1}{2}x^2} I.$$

Thus $V = \int_{-\infty}^{\infty} A(x) \, dx = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} I \, dx = I \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} \, dx = I^2.$

Comparing the two formulas for V, we have $2\pi = I^2$, so $I = \sqrt{2\pi}$.

5. Fifth Proof: The Γ-function

For any integer $n \geq 0$, we have $n! = \int_{0}^{\infty} t^n e^{-t} \, dt$. For $x > 0$ we define

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} \, dt,$$

so $\Gamma(n) = (n-1)!$ when $n \geq 1$. Using integration by parts, $\Gamma(x+1) = x\Gamma(x)$. One of the basic properties of the Γ-function [13, pp. 193–194] is

$$\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_{0}^{1} t^{x-1}(1-t)^{y-1} \, dt.$$

Set $x = y = \frac{1}{2}$:

$$\Gamma\left(\frac{1}{2}\right)^2 = \int_{0}^{1} \frac{dt}{\sqrt{t(1-t)}}.$$

Note

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} \sqrt{t}e^{-t} \frac{dt}{t} = \int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} \, dt = \int_{0}^{\infty} \frac{e^{-x^2}}{x} \, dx = 2 \int_{0}^{\infty} e^{-x^2} \, dx = 2J,$$

so $4J^2 = \int_{0}^{1} \frac{dt}{\sqrt{t(1-t)}}$. With the substitution $t = \sin^2 \theta$,

$$4J^2 = \int_{0}^{\pi/2} 2 \sin \theta \cos \theta \frac{d\theta}{\sin \theta \cos \theta} = 2 \frac{\pi}{2} = \pi,$$

so $J = \sqrt{\pi}/2$. Equivalently, $\Gamma(1/2) = \sqrt{\pi}$. Any method that proves $\Gamma(1/2) = \sqrt{\pi}$ is also a method that calculates $\int_{0}^{\infty} e^{-x^2} \, dx$.

6. Sixth Proof: Asymptotic Estimates

We will show $J = \sqrt{\pi}/2$ by a technique whose steps are based on [14, p. 371].

For $x \geq 0$, power series expansions show $1 + x \leq e^x \leq 1/(1 - x)$. Reciprocating and replacing x with x^2, we get

$$1 - x^2 \leq e^{-x^2} \leq \frac{1}{1 + x^2}.$$

for all $x \in \mathbb{R}$.

For any positive integer n, raise the terms in (6.1) to the nth power and integrate from 0 to 1:

$$\int_{0}^{1} (1 - x^2)^n \, dx \leq \int_{0}^{1} e^{-nx^2} \, dx \leq \int_{0}^{1} \frac{dx}{(1 + x^2)^n}.$$
Under the changes of variables \(x = \sin \theta \) on the left, \(x = y/\sqrt{n} \) in the middle, and \(x = \tan \theta \) on the right,

\[
\int_0^{\pi/2} (\cos \theta)^{2n+1} \, d\theta \leq \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} e^{-y^2} \, dy \leq \int_0^{\pi/4} (\cos \theta)^{2n-2} \, d\theta.
\]

Set \(I_k = \int_0^{\pi/2} (\cos \theta)^k \, d\theta \), so \(I_0 = \pi/2 \), \(I_1 = 1 \), and (6.2) implies

\[
\sqrt{n}I_{2n+1} \leq \int_0^{\sqrt{n}} e^{-y^2} \, dy \leq \sqrt{n}I_{2n-2}.
\]

We will show that as \(k \to \infty \), \(kI_2^k \to \pi/2 \). Then

\[
\sqrt{n}I_{2n+1} = \frac{\sqrt{n}}{\sqrt{2n+1}} \sqrt{2n+1}I_{2n+1} \to \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2}
\]

and

\[
\sqrt{n}I_{2n-2} = \frac{\sqrt{n}}{\sqrt{2n-2}} \sqrt{2n-2}I_{2n-2} \to \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2},
\]

so by (6.3) \(\int_0^{\sqrt{n}} e^{-y^2} \, dy \to \sqrt{\pi}/2 \). Thus \(J = \sqrt{\pi}/2 \).

To show \(kI_2^k \to \pi/2 \), first we compute several values of \(I_k \) explicitly by a recursion. Using integration by parts,

\[
I_k = \int_0^{\pi/2} (\cos \theta)^k \, d\theta = \int_0^{\pi/2} (\cos \theta)^{k-1} \cos \theta \, d\theta = (k-1)(I_{k-2} - I_k),
\]

so

\[
I_k = \frac{k-1}{k}I_{k-2}.
\]

Using (6.4) and the initial values \(I_0 = \pi/2 \) and \(I_1 = 1 \), the first few values of \(I_k \) are computed and listed in Table 1.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(I_k)</th>
<th>(k)</th>
<th>(I_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\pi/2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>((1/2)(\pi/2))</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>4</td>
<td>((3/8)(\pi/2))</td>
<td>5</td>
<td>8/15</td>
</tr>
<tr>
<td>6</td>
<td>((15/48)(\pi/2))</td>
<td>7</td>
<td>48/105</td>
</tr>
</tbody>
</table>

Table 1.

From Table 1 we see that

\[
I_{2n}I_{2n+1} = \frac{1}{2n+1}\frac{\pi}{2}
\]

for \(0 \leq n \leq 3 \), and this can be proved for all \(n \) by induction using (6.4). Since \(0 \leq \cos \theta \leq 1 \) for \(\theta \in [0, \pi/2] \), we have \(I_k \leq I_{k-1} \leq I_{k-2} = \frac{k}{k-1}I_k \) by (6.4), so \(I_{k-1} \sim I_k \) as \(k \to \infty \). Therefore (6.5) implies

\[
I_{2n}^2 \sim \frac{1}{2n} \frac{\pi}{2} \implies (2n)I_{2n}^2 \to \frac{\pi}{2}
\]

as \(n \to \infty \). Then

\[
(2n+1)I_{2n+1}^2 \sim (2n)I_{2n}^2 \to \frac{\pi}{2}
\]

as \(n \to \infty \), so \(kI_k^2 \to \pi/2 \) as \(k \to \infty \). This completes our proof that \(J = \sqrt{\pi}/2 \).
Remark 6.1. This proof is closely related to the fifth proof using the \(\Gamma \)-function. Indeed, by \((5.1)\)
\[
\frac{\Gamma\left(\frac{k+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{k+2}{2} + \frac{1}{2}\right)} = \int_{0}^{1} t^{(k+1)/2+1}(1 - t)^{1/2-1} \, dt,
\]
and with the change of variables \(t = (\cos \theta)^{2} \) for \(0 \leq \theta \leq \pi/2 \), the integral on the right is equal to
\[
2 \int_{0}^{\pi/2} (\cos \theta)^{k} \, d\theta = 2I_{k},
\]
so \((6.5)\) is the same as
\[
\pi \frac{\pi}{2} (2n + 1) = \int_{0}^{\pi/2} (\cos \theta)^{k} \, d\theta = 2I_{k},
\]
or equivalently \(\Gamma(1/2)^{2} = \pi \). We saw in the fifth proof that \(\Gamma(1/2) = \sqrt{\pi} \) if and only if \(J = \sqrt{\pi}/2 \).

7. Seventh Proof: The original proof

The original proof that \(J = \sqrt{\pi}/2 \) is due to Laplace \([7]\) in 1774. (An English translation of Laplace’s article is mentioned in the bibliographic citation for \([7]\), with preliminary comments on that article in \([15]\).) He wanted to compute
\[
\int_{0}^{1} \frac{dx}{\sqrt{-\log x}}.
\]
Setting \(y = \sqrt{-\log x} \), this integral is \(2 \int_{0}^{\infty} e^{-y^{2}} \, dy = 2J \), so we expect \((7.1)\) to be \(\sqrt{\pi} \).

Laplace’s starting point for evaluating \((7.1)\) was a formula of Euler:
\[
\int_{0}^{1} \frac{x^{r}}{\sqrt{1 - x^{2s}}} \, dx = \frac{\pi}{(r+1)/2}.
\]
for positive \(r \) and \(s \). (Laplace himself said this formula held “whatever be” \(r \) or \(s \), but if \(s < 0 \) then the number under the square root is negative.) Accepting \((7.2)\), let \(r \to 0 \) in it to get
\[
\int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}}} \int_{0}^{1} x^{s} \, dx = \frac{\pi}{s}.
\]
Now let \(s \to 0 \) in \((7.3)\). Then \(1 - x^{2s} \sim -2s \log x \) by L’Hospital’s rule, so \((7.3)\) becomes
\[
\left(\int_{0}^{1} \frac{dx}{\sqrt{-\log x}} \right)^{2} = \pi.
\]
Thus \((7.1)\) is \(\sqrt{\pi} \).

Euler’s formula \((7.2)\) looks mysterious, but we have met it before. In the formula let \(x^{s} = \cos \theta \) with \(0 \leq \theta \leq \pi/2 \). Then \(x = (\cos \theta)^{1/s} \), and after some calculations \((7.2)\) turns into
\[
\int_{0}^{\pi/2} (\cos \theta)^{(r+1)/s - 1} \, d\theta \int_{0}^{\pi/2} (\cos \theta)^{(r+1)/s} \, d\theta = \frac{1}{(r+1)/s} \pi.
\]
We used the integral $I_k = \int_0^{\pi/2} (\cos \theta)^k d\theta$ before when k is a nonnegative integer. This notation makes sense when k is any positive real number, and then (7.4) assumes the form $I_\alpha I_{\alpha+1} = \frac{1}{\alpha+1} \frac{\pi}{2}$ for $\alpha = (r+1)/s-1$, which is (6.5) with a possibly nonintegral index. Letting $r = 0$ and $s = 1/(2n+1)$ in (7.4) recovers (6.5). Letting $s \to 0$ in (7.3) corresponds to letting $n \to \infty$ in (6.5), so the 6th proof is in essence a more detailed version of Laplace’s 1774 argument.

8. Eighth Proof: Contour Integration

We will calculate $\int_{-\infty}^{\infty} e^{-x^2/2} dx$ using contour integrals and the residue theorem. However, we can’t just integrate $e^{-z^2/2}$, as this function has no poles. For a long time nobody knew how to handle this integral using contour integration. For instance, in 1914 Watson [10, p. 79] wrote at the end of his book “Cauchy’s theorem cannot be employed to evaluate all definite integrals; thus $\int_0^{\infty} e^{-x^2} dx$ has not been evaluated except by other methods.” In the 1940s several contour integral solutions were published using awkward contours such as parallelograms [9], [11, Sect. 5] (see [1, Exer. 9, p. 113] for a recent appearance). Our approach will follow Kneser [5, p. 121] (see also [12, pp. 413–414] or [13]), using a rectangular contour and the function

$$\frac{e^{-z^2/2}}{1 - e^{-\sqrt{\pi}(1+i)z}}.$$

This function comes out of nowhere, so our first task is to motivate the introduction of this function.

We seek a meromorphic function $f(z)$ to integrate around the rectangular contour γ_R in the figure below, with vertices at $-R$, R, $R + ib$, and $-R + ib$, where b will be fixed and we let $R \to \infty$.

![Contour Diagram](image)

Suppose $f(z) \to 0$ along the right and left sides of γ_R uniformly as $R \to \infty$. Then by applying the residue theorem and letting $R \to \infty$, we would obtain (if the integrals converge)

$$\int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x + ib) dx = 2\pi i \sum_a \text{Res}_{z=a} f(z),$$

where the sum is over poles of $f(z)$ with imaginary part between 0 and b. This is equivalent to

$$\int_{-\infty}^{\infty} (f(x) - f(x + ib)) dx = 2\pi i \sum_a \text{Res}_{z=a} f(z).$$

Therefore we want $f(z)$ to satisfy

$$f(z) - f(z + ib) = e^{-z^2/2}, \quad (8.1)$$

where $f(z)$ and b need to be determined.

Let’s try $f(z) = e^{-z^2/2}/d(z)$, for an unknown denominator $d(z)$ whose zeros are poles of $f(z)$. We want $f(z)$ to satisfy

$$f(z) - f(z + \tau) = e^{-z^2/2}, \quad (8.2)$$
for some τ (which will not be purely imaginary, so (8.1) doesn’t quite work, but (8.1) is only motivation). Substituting $e^{-z^2/2}/d(z)$ for $f(z)$ in (8.2) gives us

\[
(8.3) \quad e^{-z^2/2} \left(\frac{1}{d(z)} - \frac{e^{-\tau z - \tau^2/2}}{d(z + \tau)} \right) = e^{-z^2/2}.
\]

Suppose $d(z + \tau) = d(z)$. Then (8.3) implies

\[
d(z) = 1 - e^{-\tau z - \tau^2/2},
\]

and with this definition of $d(z)$, $f(z)$ satisfies (8.2) if and only if $e^\tau = 1$, or equivalently $\tau^2 \in 2\pi i \mathbb{Z}$. The simplest nonzero solution is $\tau = \sqrt{\pi}(1 + i)$. From now on this is the value of τ, so $e^{-\tau^2/2} = e^{-i\pi} = -1$ and then

\[
f(z) = \frac{e^{-z^2/2}}{d(z)} = \frac{e^{-z^2/2}}{1 + e^{-\tau z}},
\]

which is Kneser’s function mentioned earlier. This function satisfies (8.2) and we henceforth ignore the motivation (8.1). Poles of $f(z)$ are at odd integral multiples of $\tau/2$.

We will integrate this $f(z)$ around the rectangular contour γ_R below, whose height is $\text{Im}(\tau)$.

The poles of $f(z)$ nearest the origin are plotted in the figure; they lie along the line $y = x$. The only pole of $f(z)$ inside γ_R (for $R > \sqrt{\pi}/2$) is at $\tau/2$, so by the residue theorem

\[
\int_{\gamma_R} f(z) \, dz = 2\pi i \text{Res}_{z=\tau/2} f(z) = 2\pi i \frac{e^{-\tau^2/8}}{(-\tau)e^{-\tau^2/2}} = \frac{2\pi i e^{3\tau^2/8}}{-\sqrt{\pi}(1 + i)} = \sqrt{2\pi}.
\]

As $R \to \infty$, the value of $|f(z)|$ tends to 0 uniformly along the left and right sides of γ_R, so

\[
\sqrt{2\pi} = \int_{-\infty}^{\infty} f(x) \, dx + \int_{\infty + i\sqrt{\pi}}^{-\infty + i\sqrt{\pi}} f(z) \, dz = \int_{-\infty}^{\infty} f(x) \, dx - \int_{-\infty}^{\infty} f(x + i\sqrt{\pi}) \, dx.
\]
In the second integral, write \(i \sqrt{\pi} \) as \(\tau - \pi \) and use (real) translation invariance of \(dx \) to obtain
\[
\sqrt{2\pi} = \int_{-\infty}^{\infty} f(x) \, dx - \int_{-\infty}^{\infty} f(x + \tau) \, dx
= \int_{-\infty}^{\infty} (f(x) - f(x + \tau)) \, dx
= \int_{-\infty}^{\infty} e^{-x^2/2} \, dx \quad \text{by (8.2)}.
\]

9.

Ninth Proof: Stirling’s Formula

Besides the integral formula \(\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} \, dx = \sqrt{2\pi} \) that we have been discussing, another place in mathematics where \(\sqrt{2\pi} \) appears is in Stirling’s formula:
\[
n! \sim \frac{n^n}{e^n} \sqrt{2\pi n} \quad \text{as } n \to \infty.
\]

In 1730 De Moivre proved \(n! \sim C(n^n/e^n)\sqrt{n} \) for some positive number \(C \) without being able to determine \(C \). Stirling soon thereafter showed \(C = \sqrt{2\pi} \) and wound up having the whole formula named after him. We will show that determining that the constant \(C \) in Stirling’s formula is \(\sqrt{2\pi} \) is equivalent to showing that \(J = \sqrt{\pi}/2 \) (or, equivalently, that \(I = \sqrt{2\pi} \)).

Applying \([6.4]\) repeatedly,
\[
I_{2n} = \frac{2n-1}{2n} I_{2n-2}
= \frac{(2n-1)(2n-3)}{(2n)(2n-2)} I_{2n-4}
\vdots
= \frac{(2n-1)(2n-3)(2n-5)\cdots(5)(3)(1)}{(2n)(2n-2)(2n-4)\cdots(6)(4)(2)} I_0.
\]

Inserting \((2n-2)(2n-4)(2n-6)\cdots(6)(4)(2)\) in the top and bottom,
\[
I_{2n} = \frac{(2n-1)(2n-3)(2n-5)\cdots(6)(4)(2)(1) \pi}{(2n)(2n-2)(2n-4)\cdots(6)(4)(2)^2} \frac{\pi}{2} = \frac{(2n-1)!}{2n^{2n-1}(n-1)!} \frac{\pi}{2}.
\]

Applying De Moivre’s asymptotic formula \(n! \sim C(n/e)^n \sqrt{n} \),
\[
I_{2n} \sim \frac{C((2n-1)/e)^{2n-1} \sqrt{2n-1}}{2n^{2n-1}C((n-1)/e)^{n-1}\sqrt{n-1}} \frac{\pi}{2} = \frac{(2n-1)^{2n-1} \frac{1}{2n-1} \sqrt{2n-1} \frac{\pi}{2}}{2n \cdot 2^{2n-1} \pi Ce(n-1)^{2n-1} \frac{1}{(n-1)!} \sqrt{n-1}}.
\]
as \(n \to \infty \). For any \(a \in \mathbb{R} \), \((1 + a/n)^n \to e^a \) as \(n \to \infty \), so \((n + a)^n \sim e^a n^n \). Substituting this into the above formula with \(a = -1 \) and \(n \) replaced by \(2n \),
\[
(9.1)
I_{2n} \sim \frac{e^{-1}(2n)^{2n-1} \sqrt{2n} \frac{\pi}{2}}{2n \cdot 2^{2n-1} Ce(e^{-1}n)^2 \frac{1}{\pi} n^2} = \frac{\pi}{C \sqrt{2n}}.
\]

Since \(I_{k-1} \sim I_k \), the outer terms in \([6.3]\) are both asymptotic to \(\sqrt{n} I_{2n} \sim \pi/(C \sqrt{2}) \) by \([9.1]\). Therefore
\[
\int_0^{\sqrt{n}} e^{-y^2} \, dy \to \frac{\pi}{C \sqrt{2}}
\]
as \(n \to \infty \), so \(J = \pi/(C \sqrt{2}) \). Therefore \(C = \sqrt{2\pi} \) if and only if \(J = \sqrt{\pi}/2 \).
For a continuous function \(f: \mathbb{R} \to \mathbb{C} \) that is rapidly decreasing at \(\pm \infty \), its Fourier transform is the function \(\mathcal{F}f: \mathbb{R} \to \mathbb{C} \) defined by
\[
(\mathcal{F}f)(y) = \int_{-\infty}^{\infty} f(x) e^{-ixy} \, dx.
\]
For example, \((\mathcal{F}f)(0) = \int_{-\infty}^{\infty} f(x) \, dx\).

Here are three properties of the Fourier transform.

- If \(f \) is differentiable, then after using differentiation under the integral sign on the Fourier transform of \(f \) we obtain
 \[
 (\mathcal{F}f)'(y) = \int_{-\infty}^{\infty} -ixf(x) e^{-ixy} \, dx = -i(\mathcal{F}(xf(x)))(y).
 \]
- Using integration by parts on the Fourier transform of \(f \), with \(u = f(x) \) and \(\, dv = e^{-ixy} \, dx \), we obtain
 \[
 \mathcal{F}(f')(y) = iy(\mathcal{F}f)(y).
 \]
- If we apply the Fourier transform twice then we recover the original function up to interior and exterior scaling:
\[
(\mathcal{F}^2 f)(x) = 2\pi f(-x).
\]
Let’s show the appearance of \(2\pi \) in \((10.1)\) is equivalent to the evaluation of \(I \) as \(\sqrt{2\pi} \).

Fixing \(a > 0 \), set \(f(x) = e^{-ax^2} \), so
\[
f'(x) = -2axf(x).
\]
Applying the Fourier transform to both sides of this equation implies
\[
(\mathcal{F}f)(y) = -2ae^{-\frac{1}{4a}y^2}.
\]
which simplifies to
\[
(\mathcal{F}f)'(y) = -\frac{1}{2a}y(\mathcal{F}f)(y).
\]
The general solution of \(g'(y) = -\frac{1}{2a}yg(y) \) is \(g(y) = Ce^{-y^2/(4a)} \), so
\[
(\mathcal{F}f)(y) = Ce^{-y^2/(4a)}
\]
for some constant \(C \). Letting \(a = \frac{1}{2} \), so \(f(x) = e^{-x^2/2} \), we obtain
\[
(\mathcal{F}f)(y) = Ce^{-y^2/2} = Cf(y).
\]
Setting \(y = 0 \), the left side is \((\mathcal{F}f)(0) = \int_{-\infty}^{\infty} e^{-x^2/2} \, dx = I \), so \(I = C(f(0)) = C \).

Applying the Fourier transform to both sides of the equation \((\mathcal{F}f)(y) = Cf(y)\), we get \(2\pi f(-x) = C(\mathcal{F}f)(x) = C^2f(x) \). At \(x = 0 \) this becomes \(2\pi = C^2 \), so \(I = C = \pm \sqrt{2\pi} \). Since \(I > 0 \), the number \(I \) is \(\sqrt{2\pi} \). If we didn’t know the constant on the right side of \((10.1)\) were \(2\pi \), whatever its value is would wind up being \(C^2 \), so saying \(2\pi \) appears on the right side of \((10.1)\) is equivalent to saying \(I = \sqrt{2\pi} \).

References

