4.1 Vector Spaces & Subspaces

Many concepts concerning vectors in \mathbb{R}^n can be extended to other mathematical systems. We can think of a vector space in general, as a collection of objects that behave as vectors do in \mathbb{R}^n. The objects of such a set are called vectors.

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all \mathbf{u}, \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

1. $\mathbf{u} + \mathbf{v}$ is in V.
2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
4. There is a vector (called the zero vector) $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
5. For each \mathbf{u} in V, there is vector $-\mathbf{u}$ in V satisfying $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
6. $c\mathbf{u}$ is in V.
7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
9. $(cd)\mathbf{u} = c(d\mathbf{u})$.
10. $1\mathbf{u} = \mathbf{u}$.

Vector Space Examples

EXAMPLE: Let $M_{2\times2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ are real} \right\}$

In this context, note that the $\mathbf{0}$ vector is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
EXAMPLE: Let \(n \geq 0 \) be an integer and let

\[
P_n = \text{the set of all polynomials of degree at most } n \geq 0.
\]

Members of \(P_n \) have the form

\[
p(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n
\]

where \(a_0, a_1, \ldots, a_n \) are real numbers and \(t \) is a real variable. The set \(P_n \) is a vector space.

We will just verify 3 out of the 10 axioms here.

Let \(p(t) = a_0 + a_1 t + \cdots + a_n t^n \) and \(q(t) = b_0 + b_1 t + \cdots + b_n t^n \). Let \(c \) be a scalar.

Axiom 1:
The polynomial \(p + q \) is defined as follows: \((p + q)(t) = p(t) + q(t) \). Therefore,

\[
(p + q)(t) = p(t) + q(t) = (\quad) + (\quad)t + \cdots + (\quad)t^n
\]

which is also a \(\quad \) of degree at most \(\quad \). So \(p + q \) is in \(P_n \).

Axiom 4:

\[
0 = 0 + 0t + \cdots + 0t^n
\]

(zero vector in \(P_n \))

\[
(p + 0)(t) = p(t) + 0 = (a_0 + 0) + (a_1 + 0)t + \cdots + (a_n + 0)t^n = a_0 + a_1 t + \cdots + a_n t^n = p(t)
\]

and so \(p + 0 = p \)

Axiom 6:

\[
(c p)(t) = c p(t) = (\quad) + (\quad)t + \cdots + (\quad)t^n
\]

which is in \(P_n \).

The other 7 axioms also hold, so \(P_n \) is a vector space.
Subspaces

Vector spaces may be formed from subsets of other vector spaces. These are called *subspaces*.

A **subspace** of a vector space V is a subset H of V that has three properties:

a. The zero vector of V is in H.

b. For each u and v are in H, $u + v$ is in H. (In this case we say H is closed under vector addition.)

c. For each u in H and each scalar c, cu is in H. (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.

EXAMPLE: Let $H =$ \[
\begin{bmatrix}
 a \\
 0 \\
 b
\end{bmatrix}
\] : a and b are real. Show that H is a subspace of \mathbb{R}^3.

Solution: Verify properties a, b and c of the definition of a subspace.

a. The zero vector of \mathbb{R}^3 is in H (let $a = \underline{}$ and $b = \underline{}$).

b. Adding two vectors in H always produces another vector whose second entry is $\underline{}$ and therefore the sum of two vectors in H is also in H. (H is closed under addition)

c. Multiplying a vector in H by a scalar produces another vector in H (H is closed under scalar multiplication).

Since properties a, b, and c hold, V is a subspace of \mathbb{R}^3. **Note:** Vectors $(a,0,b)$ in H look and act like the points (a,b) in \mathbb{R}^2.
Example: Is \(H = \left\{ \begin{bmatrix} x \\ x + 1 \end{bmatrix} : x \text{ is real} \right\} \) a subspace of _______?

I.e., does \(H \) satisfy properties a, b and c?

\[\begin{array}{c}
\text{Graphical Depiction of } H \\
\end{array} \]

Solution:

All three properties must hold in order for \(H \) to be a subspace of \(\mathbb{R}^2 \).

Property (a) is not true because

\[\text{______________________________} \]

Therefore \(H \) is not a subspace of \(\mathbb{R}^2 \).

Another way to show that \(H \) is not a subspace of \(\mathbb{R}^2 \):

Let

\[u = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ and } v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{, then } u + v = \begin{bmatrix} \text{________} \\ \text{________} \end{bmatrix} \]

and so

\[u + v = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{, which is } \text{____ in } H. \text{ So property (b) fails and so } H \text{ is not a subspace of } \mathbb{R}^2. \]
A Shortcut for Determining Subspaces

THEOREM 1

If \(\mathbf{v}_1, \ldots, \mathbf{v}_p \) are in a vector space \(V \), then \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \) is a subspace of \(V \).

Proof: In order to verify this, check properties a, b and c of definition of a subspace.

a. \(\mathbf{0} \) is in \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \) since

\[
\mathbf{0} = \ldots + \mathbf{v}_p
\]

b. To show that \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \) closed under vector addition, we choose two arbitrary vectors in \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \):

\[
\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_p \mathbf{v}_p
\]

and

\[
\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \cdots + b_p \mathbf{v}_p.
\]

Then

\[
\mathbf{u} + \mathbf{v} = (a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_p \mathbf{v}_p) + (b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \cdots + b_p \mathbf{v}_p)
\]

\[
= (\ldots + \mathbf{v}_1) + (\ldots + \mathbf{v}_2) + \cdots + (\ldots + \mathbf{v}_p)
\]

\[
= (a_1 + b_1) \mathbf{v}_1 + (a_2 + b_2) \mathbf{v}_2 + \cdots + (a_p + b_p) \mathbf{v}_p.
\]

So \(\mathbf{u} + \mathbf{v} \) is in \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \).

c. To show that \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \) closed under scalar multiplication, choose an arbitrary number \(c \) and an arbitrary vector in \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \):

\[
\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \cdots + b_p \mathbf{v}_p.
\]

Then

\[
c \mathbf{v} = c (b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \cdots + b_p \mathbf{v}_p)
\]

\[
= \ldots + \mathbf{v}_p
\]

So \(c \mathbf{v} \) is in \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \).

Since properties a, b and c hold, \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \) is a subspace of \(V \).
Recap

1. To show that \(H \) is a subspace of a vector space, use Theorem 1.
2. To show that a set is not a subspace of a vector space, provide a specific example showing that at least one of the axioms a, b or c (from the definition of a subspace) is violated.

EXAMPLE: Is \(V = \{(a + 2b, 2a - 3b) : a \text{ and } b \text{ are real}\} \) a subspace of \(\mathbb{R}^2 \)? Why or why not?

Solution: Write vectors in \(V \) in column form:

\[
\begin{bmatrix}
a + 2b \\
2a - 3b
\end{bmatrix} = \begin{bmatrix} a \\
2a
\end{bmatrix} + \begin{bmatrix} 2b \\
-3b
\end{bmatrix} = \begin{bmatrix} 1 \\
2
\end{bmatrix} + \begin{bmatrix} 2 \\
-3
\end{bmatrix}
\]

So \(V = \text{Span}\{v_1, v_2\} \) and therefore \(V \) is a subspace of _____ by Theorem 1.

EXAMPLE: Is \(H = \left\{ \begin{bmatrix} a + 2b \\ a + 1 \\ a \end{bmatrix} : a \text{ and } b \text{ are real} \right\} \) a subspace of \(\mathbb{R}^3 \)? Why or why not?

Solution: \(0 \) is not in \(H \) since \(a = b = 0 \) or any other combination of values for \(a \) and \(b \) does not produce the zero vector. So property _____ fails to hold and therefore \(H \) is not a subspace of \(\mathbb{R}^3 \).

EXAMPLE: Is the set \(H \) of all matrices of the form \(\begin{bmatrix} 2a & b \\ 3a + b & 3b \end{bmatrix} \) a subspace of \(M_{2\times2} \)? Explain.

Solution: Since

\[
\begin{bmatrix}
2a & b \\
3a + b & 3b
\end{bmatrix} = \begin{bmatrix} 2a \\
3a
\end{bmatrix} + \begin{bmatrix} 0 \\
b
\end{bmatrix}
\]

Therefore \(H = \text{Span}\left\{\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}\right\} \) and so \(H \) is a subspace of \(M_{2\times2} \).