1. Let $W(t)$ be a Brownian motion and $\mathcal{F}(t)$ the associated filtration. Show in two different ways that

$$e^{\sigma W(t) - \frac{1}{2} \sigma^2 t}$$

is an $\mathcal{F}(t)$ martingale where σ is a non-negative constant.

(a) First, show it using Itô’s lemma (Itô-Doeblin formula)

(b) Second, show it without using Itô’s lemma in any way, using only the definitions of $W(t)$ and of a martingale

2. Let $W(t)$ be a Brownian motion and $\mathcal{F}(t)$ the associated filtration. Without assuming any knowledge of the moments of the standard normal distribution, use Itô’s lemma and your knowledge of stochastic calculus to show that $\mathbb{E}[W^6(t)] = 15t^3$. (Hint: first use stochastic calculus to figure out what $\mathbb{E}[W^2(t)]$ and $\mathbb{E}[W^4(t)]$ are equal to.)

3. Derive the general form for all solutions $S(t)$ to the equation

$$dS(t) = \sigma(t)S(t)dW(t) + \alpha(t)S(t)dt$$

4. You know that the price $V(t)$ at time t for a derivative security that has payoff $V(T)$ at time $T > t$ is given by

$$V(t) = \mathbb{E}\left[e^{-\int_t^T R(u)du} V(T) \mid \mathcal{F}(t)\right]$$

where $R(t)$ is the risk-free short-term interest rate. Using formulas where necessary, explain the difference between \mathbb{E} and \mathbb{E} and what the connection is between \mathbb{E} and the process $S(t)$ for the underlying stock price.

5. In the same situation as question 4 above, explain why the existence of a portfolio process $X(t) = V(t)$ with

$$dX(t) = \Delta(t)dS(t) + R(t) [X(t) - \Delta(t)S(t)] dt$$
depends upon the assumption that $\sigma(t) > 0$ almost surely, where $\sigma(t)$ is the volatility process in the geometric Brownian motion process $S(t)$ for the underlying stock price. Be sure to explain what any new symbols that you introduce are, where they come from, and what justifies your using them.

6. Let the random variable A be the value at time T of an asset and assume that A is almost-surely positive, where A is $\mathcal{F}(T)$ measurable in the filtration determined by a Brownian motion $W(t)$. Assume that there is a risk free rate process $R(t)$ and a unique risk-neutral measure. Show that there exist random processes $V(t)$, $\alpha(t)$ and $\sigma(t)$ so that $dV(t) = \alpha(t)V(t)dt + \sigma(t)V(t)dW(t)$ (i.e. $V(t)$ is a generalized geometric Brownian motion) and $V(T) = A$. This means that all positive assets measurable in the filtration generated by a Brownian motion can be represented by a generalized geometric Brownian motion based on the original Brownian motion.

7. Do exercise 6.1 from the textbook.