Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (**10 pts**)

- (a) (5 **pts**) If G is a group and $g, h \in G$ have orders m and n with gcd(m, n) = 1 and gh = hg then prove gh has order mn. (This has counterexamples if gcd(m, n) > 1 or $gh \neq hg!$)
- (b) (5 pts) The prime factorization of 2021 is $43 \cdot 47$. Use (a) and the Sylow theorems to prove all groups of order 2021 are cyclic.
- 2. (10 pts) Let $G = GL_2(\mathbf{F}_3)$ act on the set X of all 1-dimensional subspaces of \mathbf{F}_3^2 :

$$X = \left\{ \mathbf{F}_3 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{F}_3 \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \mathbf{F}_3 \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{F}_3 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

and for $A \in G$ and a 1-dimensional subspace $L = \mathbf{F}_3 \mathbf{v}$ in X, set $A(L) = \mathbf{F}_3 A(\mathbf{v})$.

- (a) (4 pts) Prove this action of G on X has one orbit.
- (b) (4 pts) Compute the stabilizer subgroup of $\mathbf{F}_3(\frac{1}{0})$.
- (c) (2 pts) Compute |G| (you may use (a) and (b) for this, or another method.)

3. (**10 pts**)

- (a) (3 pts) Define what irreducibility means in an integral domain.
- (b) (7 pts) Prove Eisenstein's irreducibility criterion for monic polynomials in $\mathbf{Z}[x]$: if $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ is monic in $\mathbf{Z}[x]$ and there is a prime p such that $p \mid a_j$ for j < n and $p^2 \nmid a_0$, then f(x) is irreducible in $\mathbf{Z}[x]$.

4. (10 pts)

- (a) (5 pts) In the ring $\mathbf{Z}[x]$, compute the index of the ideal $(2, x^2)$ in $\mathbf{Z}[x]$ and determine a maximal ideal that contains $(2, x^2)$.
- (b) (5 pts) In the ring $\mathbb{Z}[\sqrt{5}]$, show the principal ideal (3) is maximal.
- 5. (10 pts) On the ring $V = \mathbf{R}[x]/(x^2 4)$, viewed as a 2-dimensional real vector space, there is an inner product defined by $\langle f, g \rangle = f(2)g(2) + f(-2)g(-2)$. (You don't have to check this.)
 - (a) (4 pts) For each $h \in V$, let $L_h : V \to V$ by $L_h(f) = hf$. Prove L_h is self-adjoint for the inner product above.
 - (b) (6 pts) Find the matrix representation for L_{1+3x} with respect to the basis $\{1, x\}$ of V and use it to find a basis of eigenvectors in V for L_{1+3x} . (The matrix with respect to $\{1, x\}$ is not symmetric, which is not a problem since 1 and x aren't eigenvectors of L_{1+3x} .)
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A group isomorphism $A_4 \rtimes_{\varphi} \mathbf{Z}/(2) \to S_4$ for some φ .
 - (b) (2.5 pts) An irreducible factorization of 13 in $\mathbb{Z}[\sqrt{3}]$.
 - (c) (2.5 pts) A ring isomorphism $\mathbf{R}[x]/(x^2+3) \cong \mathbf{C}$.
 - (d) (2.5 pts) A nonzero element in the dual space (\mathbf{R}^2)* that is in the kernel of the dual to the linear map $\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$: $\mathbf{R}^2 \to \mathbf{R}^2$. (Write an answer as a linear combination of the dual basis of the standard basis of \mathbf{R}^2 .)