Risk Theory Prelims for Actuarial Students August 2020

Instructions:

- 1. There are five (5) questions here and you are to answer all five. Each question is worth 20 points.
- 2. Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- 3. Please write legibly. Points will be deducted for incoherent, incorrect, and/or irrelevant statements.

Question No. 1:

Suppose aggregate loss S is given by a collective risk model, where the primary distribution is a Poisson $\mathcal{PN}(10)$ and the secondary distribution is given by

\overline{x}	$\Pr(X=x)$
5	0.6
c	0.4

where c > 5 is a constant.

- (a) Find the expected value and variance of S, $\mathrm{E}(S)$ and $\mathrm{Var}(S)$, respectively. You may use c to express the results.
- (b) If E(S) = Var(S), determine the value of c.
- (c) Consider a stop-loss insurance written on S with deductible d = 5. If the expected loss after the deductible modification is 28, determine the value of c.

Question No. 2:

Individual loss amount X follows a two-parameter $Pareto(\alpha, \theta)$ distribution with mean 25 and variance 3750. An insurance policy on X has a deductible amount of 5 and a policy limit of 100 per loss.

Assume loss amount increased due to inflation by 10% uniformly.

- (a) Determine the parameters, α and θ , of this Pareto distribution.
- (b) Calculate the expected value of claims per loss after the inflation.
- (c) Calculate the variance of claims per loss after the inflation.
- (d) Determine the effect of inflation for the coverage modification. The effect is defined to be

$$Effect = \frac{EV(Claims) \text{ per Loss after Inflation}}{EV(Claims) \text{ per Loss before Inflation}} - 1.$$

Question No. 3:

Suppose $\{X_i; i = 1, 2, \dots, n\}$ is a sequence of i.i.d. random variables and each X_i follows an exponential distribution with density function given by

$$f(x) = \lambda e^{-\lambda x}$$
, for $x > 0, \lambda > 0$.

Define the maximal order statistics M_n by

$$M_n = \max(X_1, X_2, \cdots, X_n)$$
.

- (a) Find the cumulative distribution function (cdf) of M_n .
- (b) Find the probability density function of M_n .
- (c) Let n=3, find the expectation of M_n in terms of λ .
- (d) Define the sequence of constants $c_n := 1/\lambda$ and $d_n := \log(n)/\lambda$, where log is the natural logarithm. Determine the limiting distribution of

$$\frac{M_n - d_n}{c_n},$$

that is, by finding the corresponding cumulative distribution function, $H(\cdot)$, as solution to the following

$$H(x) = \lim_{n \to \infty} \Pr\left(\frac{M_n - d_n}{c_n} \le x\right).$$

Hint: H(x) should be independent of λ , that is, free of the parameter λ .

Question No. 4:

Suppose X and Y are independent and identically distributed random variables, both following a Bernoulli distribution with parameter 0.02 (i.e., Pr(X = 1) = Pr(Y = 1) = 0.02).

- (a) Compute $VaR_{0.975}(X)$ and $VaR_{0.975}(X + Y)$. Use the results to discuss which of the four axiom(s) in the definition of "coherent risk measure" the VaR does not satisfy.
- (b) Compute $\text{CVaR}_{\delta}(X)$ and $\text{CVaR}_{\delta}(X+Y)$ for all $\delta \in (0,1)$.
- (c) Show that the axiom of "Subadditivity" holds true for the CVaR.

Remark. For a random variance X with cumulative distribution function (CDF) given by F_X , the Value-at-Risk (VaR) of X at probability level δ is defined by

$$\operatorname{VaR}_{\delta}(X) := \inf \{ x \in \mathbb{R} : F_X(x) \ge \delta \}, \quad \delta \in (0, 1),$$

and the conditional VaR (CVaR) of X at probability level δ is defined by

$$\operatorname{CVaR}_{\delta}(X) := \frac{1}{1-\delta} \int_{\delta}^{1} \operatorname{VaR}_{\xi} d\xi, \quad \delta \in (0,1).$$

Question No. 5:

Ten observed values x_1, x_2, \ldots, x_{10} are drawn from a mixture distribution with density function:

$$f(x) = \frac{2}{3} \cdot \frac{1}{\theta_1} e^{-x/\theta_1} + \frac{1}{3} \cdot \frac{1}{\theta_2} e^{-x/\theta_2}, \text{ for } x > 0$$

You are given the following additional information:

$$\sum_{i=1}^{10} x_i = 300 \quad \text{and} \quad \sum_{i=1}^{10} x_i^2 = 50,000$$

- (a) Using the method of moments, estimate θ_1 and θ_2 .
- (b) Using the method of maximum likelihood, write the log of the likelihood given the observations x_1, x_2, \ldots, x_{10} .
- (c) Using the method of maximum likelihood, find the two equations to solve for the parameter estimates for θ_1 and θ_2 . DO NOT SOLVE.

APPENDIX

A random variable X is said to have a Gamma distribution with scale parameter a>0 if its density has the form

$$f(x) = \frac{a^b x^{b-1} e^{-ax}}{\Gamma(b)}, \text{ for } x > 0.$$

A random variable X is said to be a two-parameter $Pareto(\alpha, \theta)$ if its cumulative distribution function has the form

$$F(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$$
, for $x > 0$.

It mean and variance are, respectively,

$$E(x) = \frac{\theta}{\alpha - 1}$$
 and $Var(X) = \frac{\alpha \theta^2}{(\alpha - 1)(\alpha - 2)}$,

provided they exist.