Real Analysis Preliminary Exam, January 2017

Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R}^n is denoted by m or dx. For $x \in \mathbb{R}^n$ and r > 0 we denote by B(x, r) the open ball centered at x with radius r > 0. We denote by $C_c(\mathbb{R}^n)$ the space of compactly supported continuous functions in \mathbb{R}^n .
- 1. (15 points)
 - (a) State and prove Hölder's inequality.
 - (b) Let $f \in L^2(\mathbb{R}, m)$ and set $F(x) := \int_0^x f(t) dt$. Prove that there exists some constant $C \ge 0$ such that

$$|F(x) - F(y)| \le C |x - y|^{1/2}$$

for all $x, y \in \mathbb{R}$.

- 2. (15 points) Prove or disprove three of the following statements.
 - (a) If $\{f_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $L^2(\mathbb{R}^n,m)$, then it converges a.e.
 - (b) If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of measurable functions which converges in $L^{\infty}(\mathbb{R}^n, m)$, then it converges a.e.
 - (c) If U is a subset of \mathbb{R}^n whose boundary has outer Lebesgue measure 0, then U is Lebesgue measurable.
 - (d) Let (X, \mathcal{A}, ν) be a measure space, and suppose that μ is a signed measure on (X, \mathcal{A}) satisfying $\mu \ll \nu$. If $\nu(A) = 0$ then $\mu^+(A) = \mu^-(A) = 0$ where $\mu = \mu^+ \mu^-$ is the Jordan decomposition of μ .
- 3. (10 points) Let $g \in L^1(\mathbb{R}^n, m)$ such that

$$\int g(x)\phi(x)\,dx=0$$

for all $\phi \in C_c(\mathbb{R}^n)$, then g = 0 a.e.

4. (10 points) Let f be a nonnegative measurable real function such that for all $n \ge 1$,

$$\int \frac{n^2}{n^2 + x^2} f\left(x - \frac{1}{n}\right) dx \le 1.$$

Show that $f \in L^1(\mathbb{R}, m)$ and $||f||_1 \le 1$.

5. (10 points) Let $f, g \in L^1(\mathbb{R}^n, m)$ be non-negative functions such that

$$\liminf_{k \to \infty} \frac{\int_{B(x,1/k)} f(y) \, dy}{\int_{B(x,1/k)} g(y) \, dy} \le 1$$

for *m*-a.e. $x \in \mathbb{R}^n$. Show that $f \leq g$ a.e.

6. (10 points) Let $\{q_j : j = 1, ...\}$ be an enumeration of the rational numbers. For $n \ge 1$, consider the functions

$$f_n(x) = \sum_{i \le n} \frac{2^{-j}}{\sqrt{|x - q_j|}} \mathbf{1}_{\mathbb{R} \setminus \{q_j\}}(x).$$

- (a) Prove that $f(x) := \lim_{n \to \infty} f_n(x)$ exists a.e. and belongs to $L^1(I, m)$ for any bounded interval I.
- (b) Show that for any constant M the set of points $\{x \in \mathbb{R} : f(x) \le M\}$ does not contain any interval.