
MATH 5510 January 2015 PRELIMINARY EXAMINATION

INSTRUCTIONS: Solve three out of five questions. You do not have to prove results which
you rely upon, just state them clearly.

Good luck!

Q1) Solve (a), (b), (c), (d), (e).

(a) Define the n×n Vandermonde matrix Vn (with the nodes x1, x2, . . . , xn), and derive the
factorization:

Vn =



1 0 0 · · · 0

1 1 0
...

1 0 1
. . .

...
...

...
. . .

. . . 0
1 0 · · · 0 1





1 0 · · · · · · 0

0 x2 − x1
. . .

...
...

. . . x3 − x1
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 xn − x1


︸ ︷︷ ︸

L−1
1

[
1 0

0 Vn−1

]


1 x1 x21 · · · xn−11

0 1 x1
. . .

...
...

. . . 1
. . . x21

...
. . .

. . . x1
0 · · · · · · 0 1


︸ ︷︷ ︸

U−1
1

(b) Derive the formula for the determinant of Vn. Use the condition

xi 6= xj for i 6= j,

to prove that the Vandermonde matrix is nonsingular.

(c) Use (b) to prove that the following classical interpolation problem has a unique solution.

• Given n support points

(xi, fi) i = 1, . . . , n; (xi 6= xj for i 6= j).

• Find a polynomial P (x) whose degree does not exceed (n−1) such that

P (xi) = fi, i = 1, . . . n.

(d) Use (a) to recursively to derive the formula for factoring V −1n into a product of n − 1
lower triangular matrices and n − 1 upper triangular matrices. Use it to derive the
Bjorck-Pereyra algorithm for solving the interpolation problem of (c).

(e) Prove that the Bjorck-Pereyra algorithm has the cost of O(n2) operations

Q2) Answer 4 out of 5 questions (a), (b), (c), (d), (e).



(a) Derive the recurrence relation Tn+1(x) = 2xTn(x)− Tn−1(x) for the Chebyshev polyno-
mials:

Tn(x) = cos(n cos−1 x), n = 0, 1, ....

and prove that T̂n(x) = (1/2n−1)Tn(x) is a monic polynomial (that is, the leading coef-
ficient is 1).

(b) Derive the formula for all the zeros of Tn(x).

(c) Derive the formula for all the extrema of Tn(x) in the closed interval [−1, 1].

(d) Prove that T̂n(x) has minimal infinity norm among all monic polynomials of degree n on
the interval [−1, 1]. Moreover, show that ‖T̂n(x)‖∞ = 1/2n−1, where ‖ · ‖∞ denotes the
maximum norm of a function on the interval [−1, 1].

(e) Prove that Chebyshev polynomials are orthogonal with respect to the inner product in
Πn defined by

< a(x), b(x) >=

∫ 1

−1

a(x)b(x)√
1− x2

dx.

Q3) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let T be an n× n positive definite matrix. Relate the factorization

TŨ = L̃ (1)

to the standard LDL∗ factorization of T to prove that (1) always exists and it is unique.
Here Ũ is a unit (i.e., with 1’s on the main diagonal) upper triangular matrix, and L̃ is
a lower triangular matrix.

(b) Let 〈·, ·〉 be an arbitrary inner product in the vector space Πn (of all polynomials whose
degree does not exceed n). Let T be a positive definite moment matrix, i.e., T =
[〈xi, xj〉]ni,j=0. Let

uk(x) = u0,k + u1,kx + u2,kx
2 + . . . + uk−1,kx

k−1 + xk. (2)

be the k-th orthogonal polynomial with respect to 〈·, ·〉. Prove that the k-th column of
the matrix Ũ of (a) contains the coefficients of uk(x) as in

Ũ =



1 u0,1 u0,2 u0,3 · · · · · · u0,n
0 1 u1,2 u1,3 · · · · · · u1,n
0 0 1 u2,3 · · · · · · u2,n
... 0 1 · · · · · · u3,n
...

. . .
. . .

...
...

. . . 1 un−1,n
0 · · · · · · 0 1


.
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(c) Assuming now that the moment matrix T has Toeplitz structure derive the so-called
Levinson algorithm, that is, an algorithm to compute the columns of Ũ based on the
formula (deduce it) that relates the k-th column uk of U to its ”predecessor” uk−1
(k = 2, 3, . . . , n).

Hint: Use the fact (no need to prove it) that Toeplitz moment matrices T have the
following property: if

T



x1
x2
x3
...

xn−2
xn−1
xn


=



y1
y2
y3
...

yn−2
yn−1
yn


then

T



x∗n
x∗n−1
x∗n−2

...
x∗3
x∗2
x∗1


=



y∗n
y∗n−1
y∗n−2

...
y∗3
y∗2
y∗1


(d) Prove that the algorithm of (c) uses O(n2) arithmetic operations.

Q4) Solve (a), (b), (c)

(a) Use the fact that each norm ‖ · ‖ on Cn is uniformly continuous (no need to prove the
latter fact, just formulate it as a specific inequality) to prove the following theorem.

All norms on Cn are equivalent in the following sense. For each pair of norms p1(x) and
p2(x) there are positive constants m and M satisfying

mp2(x) ≤ p1(x) ≤Mp2(x)

for all x.

(b) Prove that if F is an n× n matrix with ‖F‖ < 1, then (I + F )−1 exists and satisfies

‖(I + F )−1‖ ≤ 1

1− ‖F‖
.

(c) Let A be a nonsingular n× n matrix, B = A(I + F ), ‖F‖ < 1, and x and ∆x be defined
by

Ax = b, B(x + ∆x) = b.

Use (b) to prove that
‖∆x‖
‖x‖

≤ ‖F‖
1− ‖F‖

as well as
‖∆x‖
‖x‖

≤ cond(A)

1− cond(A)‖B−A‖‖A‖

· ‖B −A‖
‖A‖
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if

cond(A)
‖B −A‖
‖A‖

< 1.

Q5) Answer 4 out of 5 questions (a), (b), (c), (d), (e).

(a) Prove that a positive definite matrix (partitioned as follows:)

A =

[
d1 a∗21
a21 A22

]
admits a factorization

A =

[
1 0

1
d1
a21 I

] [
d1 0
0 S

] [
1 1

d1
a∗21

0 I

]
with some S, and deduce the formula for S.

(b) Prove that S is also positive definite.

(c) Use the results of (a) and (b) to prove that a positive matrix A admits a factorization

A = LDL∗,

where L is unit lower triangular (i.e., with 1’s on the main diagonal), and D is a diagonal
matrix with positive diagonal entries.

(d) Use the result of (c) to prove that a positive matrix A is always invertible and that its
inverse is also a positive definite matrix.

(e) Use the result of (c) to prove that all the determinants of leading k× k submatrices of A
are positive (k = 1, 2, . . . , n).
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