Topology Prelim, January 2014

- 1. Let X, Y be topological spaces, Y Hausdorff, and let $A \subset X$ be a non-empty set.
 - (a) Suppose that $f: A \to Y$ is continuous, where A is equipped with the subspace topology. Prove that if there exists a continuous extension of f to \overline{A} , it is unique.
 - (b) Assume that A is connected in the subspace topology. Prove that \overline{A} is connected in the subspace topology.
- 2. Let S denote the standard topology on \mathbb{R} and let T be the topology on \mathbb{R} generated by the intervals [a, b), where $a \in \mathbb{Q}$ and $b \in \mathbb{R}$.
 - (a) Suppose that $f:(\mathbb{R},\mathcal{T})\to(\mathbb{R},\mathcal{S})$ is a function. Show that f is continuous if and only if the function $g:(\mathbb{R},\mathcal{S})\to(\mathbb{R},\mathcal{S})$ given by g(x)=f(x) is right-continuous at all rational points and continuous at all irrational points.
 - (b) Is $(\mathbb{R}, \mathcal{T})$ metrizable?
- 3. Suppose that X is a topological space homeomorphic to an open subset of a compact Hausdorff space. Prove that X is locally compact (=every point has a neighborhood contained in a compact set).
- 4. The real projective plane P^2 is the topological space of lines in \mathbb{R}^3 passing through the origin. One construction of P^2 is as a quotient space of the unit sphere $S^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ with the subspace topology, obtained by identifying antipodal points.
 - (a) Prove that P^2 is compact Hausdorff and that every point in P^2 has a neighborhood homeomorphic to the open unit ball in \mathbb{R}^2 .
 - (b) Prove that the quotient map is a covering map.
 - (c) Find a path in S^2 whose image under the quotient map generates the fundamental group for P^2 based at the image of (1,0,0) under the quotient map.
- 5. Show that \mathbb{R}^3 is not homeomorphic to \mathbb{R}^2 .
- 6. Let X be the subspace of \mathbb{R}^3 equal to the union of the unit sphere with the three line segments $\{(0,0,z):|z|\leq 1\}\cup\{(0,y,0):|y|\leq 1\}\cup\{(x,0,0):|x|\leq 1\}$. Compute the fundamental group of X based at (1,0,0).