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Justify all your steps rigorously. You may use any results that
you know, unless the question says otherwise, or unless the ques-
tion asks you to prove essentially the same result.

1. Prove that if a space X is path-connected, then it is also connected.

2. Let D ⊂ R2 be the closed unit disc. Define an equivalence relation on
D by

(x, y) ∼ (x̄, ȳ) ⇔ x2 + y2 = x̄2 + ȳ2.

Prove that the quotient is homeomorphic to the unit interval: D/∼ ∼=
[0, 1]

3. Let X be a topological space, and ∼ an equivalence relation on X.
Decide whether the following statements are true:

(a) If X is compact, then so is X/∼.

(b) If X/∼ is compact, then so is X.

(c) If X is Hausdorff, then so is X/ ∼.

(d) If X/∼ is Hausdorff, then so is X.

For each statement, either give a counter-example, or give a proof.

4. (Path lifting property.) Let p : (X̃, x̃0) → (X,x0) be a base-point
preserving covering map. Given any path γ : [0, 1] → X with γ(0) =
x0, show that there exists a lift γ̃ : [0, 1] → X̃ with γ̃(0) = x̃0 and
p ◦ γ̃ = γ.

5. Let p : (X̃, x̃0) → (X,x0) be a base-point preserving normal covering.
(Note: “normal coverings” are also sometimes called ”regular cover-
ings”.) Let a, b be two loops in X, based at x0. Let ã be the lift of a,

starting at x̃0; similarly, let b̃ab−1 be the lift of bab−1 starting at x̃0.

Show that ã is a loop if and only if b̃ab−1 is a loop.

6. LetX be the plane R2 with two points removed: X = R2\{(1, 0), (−1, 0)}.
Prove that π1(X) = Z ⋆ Z.


