MATH 5410, Preliminary Exam

DEPARTMENT OF MATHEMATICS University of Connecticut

August 23, 2010

NAME:	SIGNATURE:	
NAME:	SIGNATURE:	

- 1. a) What is the definition of a compact linear operator from a Banach space X to itself;
- b) Give an example of an operator for $X = L^2([0,1])$ which is a compact linear operator and explain why;
- c) Give an example of an operator for $X = L^2([0,1])$ which is NOT a compact linear operator and explain why;
- **2.** a) What is the definition of weak convergence of a sequence $\{x_n\}$ in a Hilbert space H;
 - b) Prove that a strongly convergent sequence is also a weakly convergent sequence in H;
- c) Give an example of a weakly convergent sequence which is NOT strongly convergent in $L^2([0,1])$ and explain;
- **3.** a) Give an example of a distribution which can NOT be identified with a continuous function in R and explain why.
 - b) Define $\delta(0)$ as a distribution;
 - c) If $T(\phi) = \phi(0) + \phi'(1)$ for every $\phi \in \mathcal{D}(\mathcal{R})$, find ∂T the derivative of T.
- **4.** a) Suppose f is an operator from Banach space X to itself. Give the definition of f being Fréchet differentiable at a point $x \in X$.
- b) Let X = C[0, 1] with sup-norm. Let $t_i \in [0, 1]$ and $v_i \in C[0, 1]$, and define $f(x) = \sum_{i=1}^{n} (x(t_i))v_i$. Prove that f is Fréchet differentiable at all points of X and find a formula for f'.
- **5.** Find a function in $C^1[0,1]$ that minimizes the integral $\int_0^1 [(u'(t))^2 + u(t)]dt$ with constraints u'(0) = 0 and u(1) = 1.
- **6.** Find an orthonormal basis for $L^2[0,1]$ by considering the Sturm-Liouville operator Ax = x'' + x with x(0) = x(1) = 0. Explain the reasons (theory) behind your method.