- 1. a) Show every nontrivial finite p-group has a nontrivial center.
 - b) Use part a to show for every nontrivial finite p-group G that the commutator subgroup [G,G] is a proper subgroup.
- 2. A character of a finite abelian group G is a homomorphism $\chi \colon G \to \mathbf{C}^{\times}$. The characters of G form a group under pointwise multiplication: $(\chi_1\chi_2)(g) = \chi_1(g)\chi_2(g)$ for $g \in G$. The group of characters of G is denoted \widehat{G} .
 - a) If G is a finite cyclic group of order n, prove the character group \widehat{G} is also cyclic of order n.
 - b) If G is a finite cyclic group, prove G and \widehat{G} are isomorphic using an explicit isomorphism.
- 3. Let V be a nonzero vector space over a field K. Use Zorn's lemma to prove V has a basis. (Your proof must be applicable to all nonzero vector spaces over K.)
- 4. Let R be a domain.
 - a) If R is a field, prove R[X] is a PID.
 - b) If R[X] is a PID, prove R is a field. (Hint: As a special case, can you think of a nonprincipal ideal in $\mathbf{Z}[X]$?)
- 5. Let $R = A \times B$ be a product of two nonzero commutative rings.
 - a) If \mathfrak{p}_A is a prime ideal in A and \mathfrak{p}_B is a prime ideal in B, show $\mathfrak{p}_A \times B$ and $A \times \mathfrak{p}_B$ are prime ideals in R.
 - b) Prove all prime ideals in R have one of the two forms indicated in part a. (Hint: Start by showing any prime ideal in R contains either (1,0) or (0,1).)
- 6. Give examples as requested, with brief justification.
 - a) A solvable group that is not nilpotent.
 - b) A linear operator on some complex vector space which is not diagonalizable.
 - c) An algebraic property distinguishing the rings $\mathbf{Z}[i]$ and $\mathbf{Z}[\sqrt{-5}]$ (so these rings are not isomorphic).
 - d) A construction in algebra that can be characterized by a universal mapping property. (State the universal mapping property, but you don't have to show it characterizes the construction.)