Topology Preliminary Exam 06

August, 2006

- 1. A topological space X is called a "Lindeöf space" if every open cover has a countable subcover.
 - a) Show that every second countable space is a Lindeöf space.
 - b) Given an example of a Lindeöf space that is not second countable.
- 2. Consider the capital letters of the alphabet, as below, in the sans serif style with no adornments.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Each letter is a topological space, with the subspace topology inherited from R^2 .

- a) Prove that X is not homeomorphic to Y.
- b) Give an explicit homeomorphism from O to D
- c) Consider the equivalence relation "is homeomorphic to" on the set of these letters. What are its equivalence classes?
- 3. A metric space is called "totally bounded" if for every $\epsilon > 0$, there is a finite covering of the space by ϵ balls. Prove or disprove that a totally bounded metric space is separable.
- 4. Let **T** be the collection of sets $U's \subset R^2$ such that U's are either the empty set or satisfy that for each $(x,y) \in U$, there is an open line segment in each direction about (x,y) that is contained in U.
 - a) Show **T** is a topology on \mathbb{R}^2 .
 - b) Compare T with the standard topology; that is, is T weaker, stronger, the same or none of these.
 - c) Let L denote a straight line in \mathbb{R}^2 . Compare the subspace topologies on L induced by these two topologies.
 - d) Let S denote a circle in \mathbb{R}^2 . Compare the subspace topologies on S induced by these two topologies.
- 5. Let X_{α} be a family of topological spaces, where α runs over an index set. Let X be a set and let $f_{\alpha}: X \to X_{\alpha}$ be a family of functions.
 - a) Define (describe) the smallest topology on X such that each $f_{\alpha}: X \to X_{\alpha}$ becomes continuous.
 - b) Suppose that X has the topology given in (a). Given a topological space Y, show that a function $f: Y \to X$ is continuous if and only if $f_{\alpha} \circ f: Y \to X_{\alpha}$ is continuous for each α .

- 6. A topological space X is said to be locally compact at a point $x \in X$ if there exists an open set U and a compact set C such that $x \in U \subseteq C \subseteq X$. The space X is locally compact if it is locally compact at every point. Prove or disprove the following statements.
 - a) Every compact space is locally compact.
 - b) \mathbb{R}^n is locally compact.
 - c) R^{∞} with the product topology is locally compact.
 - d) R^{∞} with the box topology is locally compact.

Good Luck!!