PhD Prelim Exam—Math 303

Notation:

Throughout the exam, m denotes Lebesgue measure on \mathbb{R} , and (X, \mathcal{S}, μ) denotes an abstract σ -finite measure space. All functions are scalar-valued, and (unless otherwise stated) the scalar field is the field of real numbers \mathbb{R} .

Note:

Every application of a major theorem must be clearly cited. All major results used and cited are collected in the first problem below.

- 10 pts 1. State clearly and completely all major results that you use and cite in your work.
 - 2. True or false? (If true, then prove it; if false, then give a counterexample. No credit will be given for guesses.)
 - (a) If a sequence of Lebesgue-measurable functions on [0,1] converges a.e. (m), then it converges in measure (m).

30 pts

- (b) If a sequence of Lebesuge-measurable functions (f_n) converges to f in $L^1([0,1],m)$, then $f_n \to f$ a.e. (m) on [0,1].
- (c) If $f \in L^1(X, \mathcal{T}, \mu)$, $f_n \in L^1(X, \mathcal{T}, \mu)$ for all $n \in \mathbb{N}$, $f_n \to f$ a.e. (μ) , and $\int_X |f_n| dm \longrightarrow \int_X |f_n| dm$, then $f_n \to f$ in $L^1(X, \mathcal{T}, \mu)$.
- (d) If $f \in L^1(\mathbb{R}, m)$, and f is uniformly continuous on \mathbb{R} , then $f \in C_0(\mathbb{R})$.
- (e) If $f \in L^{2}(X, \mathcal{I}, \mu)$ and $\mathfrak{A} \in \mathcal{F}$ is a σ -algebra, then there exists a \mathfrak{A} -measurable function g on X, such that for every $A \in \mathfrak{A}$,

$$\int_A g d\mu = \int_A f d\mu.$$

3. (a) Suppose f is a non-negative function in $L^1(X, \mathcal{F}, \mu)$. Prove that

(*)
$$\lim_{\lambda \to \infty} \lambda \ \mu(f \ge \lambda) = 0.$$

20 pts

(b) Produce a non-negative Lebesgue-measurable function f on [0,1] such that (*) above holds with $\mu = m$, but $f \notin L^1([0,1],m)$. (A small hint: consider a monotone function...)

$$\sum_{n=1}^{\infty} \mu(f > n) < \infty.$$

(Hint: write 1 = n - (n-1), and sum by parts.)

4. For $p \in [1, \infty)$, prove that if $f \in L^p(\mathbb{R}, m)$ and $g \in L^1(\mathbb{R}, m)$, then

$$f{*}g(x) \;:=\; \int_{\mathbb{R}} f(x{-}y)g(y) dy$$

is well-defined for almost all (m), and that $f*g \in L^p(\mathbb{R}, m)$ with $\|f*g\|_{L^p} \le \|f\|_{L^p} \|g\|_{L^1}$

- 5. Let \mathfrak{M} denote the σ -algebra of Lebesgue-measurable subsets of (0,1). Consider a \mathbb{R} -valued $\sigma(\mathfrak{M} \times \mathscr{F})$ -measurable function f on $(0,1) \times I$ that satisfies
 - (i) for each $t \in (0,1)$, $f(t,\cdot) \in L^1(\mu)$;
 - (ii) for each $x \in \mathcal{X}$, $f(\cdot,x)$ is differentiable on (0,1);
 - (iii) there exists $g \in L^1(\mu)$ such that for all $s \in (0,1)$ and $x \in I$,

$$\left|\frac{\partial f}{\partial t}(s,x)\right| \le g(x).$$

20 pts

Define $\varphi:(0,1)\to\mathbb{R}$ by

$$\varphi(t) = \int_X f(t,x) \mu(dx).$$

- (a) Prove that φ is differentiable at every point of (0,1), and that for all $s \in (0,1)$, $\varphi'(s) = \int_{r} \frac{\partial f}{\partial t}(s,x) \, \mu(dx).$
- (b) Determine whether φ is absolutely continuous on (0,1).