PhD Prelim exam — Measure & Integration (Math 303)

1. Let (X, \mathcal{F}, μ) be a measure space. Let f be a \mathbb{R} -valued measurable function defined on X, and for $p \in (0, \omega)$, define

$$\varphi(\mathbf{p}) = \int_{\mathbf{f}} |\mathbf{f}|^{\mathbf{p}} d\mu := \|\mathbf{f}\|_{\mathbf{L}^{\mathbf{p}}}^{\mathbf{p}}.$$

Let

$$E = \{p: \varphi(p) < \omega\},\$$

and assume $\|f\|_{T,\infty} < \omega$.

- (a) Prove that either $E = \emptyset$, or E is an unbounded subinterval of $(0, \infty)$, and that if $\varphi(p) > 0$ for some (equivalently, all) p > 0 and $E \neq \emptyset$, then $\log \varphi$ is convex on E.
- (b) Prove: if $E \neq \emptyset$, then φ is continuous on E.
- (c) Is E necessarily open? Closed? (Affirmative replies must be proved; otherwise, if reply is negative, give couterexample.)
- 2. Prove: for $p \in [1, \infty)$, if $f \in L^p(\mathbb{R}, m)$, and $g \in L^1(\mathbb{R}, m)$, then $\|f * g\|_{L^p} \le \|f\|_{L^p} \|g\|_{L^1}$. (m denotes Lebesgue measure on \mathbb{R} , and

$$f*g(x) := \int_{\mathbb{R}} f(x-y)g(y)dy.$$

Note: every application of a major theorem must be clearly cited.)

- 3. Let (X, \mathcal{F}, μ) be a finite measure space.
- (a) Prove or disprove: if a sequence (f_n) of \mathbb{R} -valued \mathscr{F} -measurable functions on X converges a.e. (μ) on X, then (f_n) converges in measure (μ) .
- (b) Prove or disprove: if a sequence (f_n) of \mathbb{R} -valued \mathscr{F} -measurable functions on X converges in measure (μ) on X, then (f_n) converges a.e. (μ) .
- (c) Prove or disprove: if a sequence (f_n) of \mathbb{R} -valued \mathscr{F} -measurable functions on I is Cauchy in $L^1(\mu)$, then (f_n) converges in measure (μ) .

- 4. Let (X, \mathcal{F}, μ) be a measure space.
- (a) Prove: if $f \in L^1(\mu)$, then for every $\epsilon > 0$ there exist $\delta > 0$ such that if $\mu(A) < \delta$ (A $\in \mathcal{P}$), then

$$\int_{A} |f| d\mu < \epsilon.$$

(b) A sequence (f_n) in $L^1(\mu)$ is said have uniformly absolutely continuous integrals if for every $\epsilon > 0$ there exist $\delta > 0$ such that $\mu(A) < \delta$ $(A \in \mathscr{F})$ implies

$$\int_A \, |f_n| \, d\mu \, < \varepsilon \quad \text{for all} \ n=1, \dots \, .$$

Suppose $\mu(X) < \infty$. Prove: if (f_n) in $L^1(\mu)$ has uniformly absolutely continuous integrals, and $f_n \to f$ a.e. (μ) , then $f_n \to f$ in $L^1(\mu)$.

- (c) Show that the result in part (b) implies the Lebesgue Dominated Convergence Theorem.
- 5. Let μ be a signed measure on the σ -algebra $\mathcal F$ in I. Prove (by applying the Radon-Nikodym theorem) that there exists a unique $\mathcal F$ -measurable function h on I, such that |h(x)| = 1 a.e. (μ) , and

$$\mu(A) = \int_A h d|\mu|$$
 for all $A \in \mathscr{F}$,

where $|\mu|$ is the total variation measure.