- 1. (a) Let $f: X \longrightarrow Y$ be a continuous map. If C is a compact subset of X, prove that f(C) is compact.
 - (b) If C is a compact subset of X and X is Hausdorff, prove that C is a closed subset of X.
- 2. Let A be a subset of the topological space X and define $B(A) = \{x \in X | U \cap A \neq \emptyset \neq U \cap (X A) \text{ for all open neighborhoods U of } x\}$. Show that A is both open and closed in X if and only if $B(A) = \emptyset$.
- 3. Let $f: X \longrightarrow Y$ be a continuous map and let $G = \{(x,y)|y = f(x) \text{ and } x \in X\} \subset X \times Y$. Prove that G is homeomorphic to X.
- 4. Let T be the collection of sets $U \subset \mathbb{R}^2$ such that U is either the empty set or for each $(x,y) \in U$, there is an open line segment in each direction about (x,y) that is contained in U.
 - a) Show T is a topology on \mathbb{R}^2 .
 - b) Compare T with the standard topology; that is, is it finer, coarser, the same or none of these?
 - c) Let L denote a straight line in R^2 . Compare the subspace topology on L induced by T with the subspace topology on L induced by the standard topology on R^2 .
 - d) Let S denote a circle in \mathbb{R}^2 . Compare the subspace topology on S induced by T with the subspace topology on S induced by the standard topology on \mathbb{R}^2 .
- 5. Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of connected spaces and let $X=\prod_{{\alpha}\in J}X_{\alpha}$ be the product space. Prove that X is connected.
- 6. Let Y denote $S^1 \times S^1 \subset R^2$ with the subspace topology. Let X denote $S^1 \times S^1$ with the quotient topology induced by p where $p: I \times I \longrightarrow S^1 \times S^1$ is defined by $p(x,y) = (\cos(2\pi x), \sin(2\pi y))$ and $I = [0,1] \subset R$. Prove that X is homeomorphic to Y.