PhD Prelim Exam-Measure & Integration

For problems 1 and 2, (X, \mathcal{A}, μ) denotes an abstract measure space and all functions are real-valued and defined on X.

- 1. (a) Define what is meant by saying f is \mathcal{A} -measurable?
- (b) Give precise definitions of the following modes of convergence:
 - (i) The sequence (f_n) converges to $f \mu$ -almost everywhere (abbrev. AE).
 - (ii) The sequence (f_n) converges to $f \mu$ -almost uniformly (abbrev. AU).
 - (iii) The sequence (f_n) converges to f in measure (abbrev. M).
 - (iv) The sequence (f_n) converges to f in mean of order p (abbrev. \mathcal{L}^p).
- (c) Prove the two implications: $AU \to AE$ and $L^p \to M$.
- (d) Give a diagram for "modes of convergence" in the general case where a solid arrow means the first mode always implies the second mode, and where a broken arrow means convergence in the first mode implies the existence of a subsequence which converges in the second mode. Include all implications, even those that follow by transitivity (no additional proofs required).
- 2. (a) Give a precise statement of Fatou's Lemma. (no proof required).
- (b) Suppose (f_n) is a sequence of nonnegative \mathcal{A} -measurable functions converging μ -a.e. to the function f, and suppose $\int f_n d\mu \to \int f d\mu < \infty$. Using only part (a) and properties of sequences of real numbers show that for every $A \in \mathcal{A}$ $\int f_n d\mu \to \int f d\mu$.
- (c) Indicate where your proof depends on the assumption $\int f d\mu < \infty$, and give an example to show that this assumption cannot be omitted.
- 3. (a) Let $X = \{1, 2, ...\}$, A = P(X) (the power set of X), and let μ be counting measure (i.e., the measure is ∞ if the set is infinite and equal to the cardinality otherwise). Define the function g on X by the rule $g(n) = n^{-1/p}$ where p is a fixed index in $[1, \infty)$. Show that $g \in \mathcal{L}^r$ iff $p < r \le \infty$. Hence deduce that $\mathcal{L}^r \not\subset \mathcal{L}^p$ for p < r.
- (b) Let X and A be as in part (a) but let μ be the measure such that $\mu(\{n\}) = 1/n^2$ for all n = 1, 2, ... Define the function f on X by the rule $f(n) = n^{1/r}$ where r is a fixed index in $(1, \infty)$. Show that $f \in \mathcal{L}^p$ iff $1 \le p < r$. Hence deduce that $\mathcal{L}^p \not\subset \mathcal{L}^r$ for p < r.
- (c) For a general X assume that $\mu(X) < \infty$ and $1 \le p < r < \infty$. Show that $\mathcal{L}^r \subset \mathcal{L}^p$ and, for all $f \in \mathcal{L}^r$, the following inequality holds $\|f\|_p \le \|f\|_r \mu(X)^{\frac{1}{p}-\frac{1}{r}}.$

(Hint: Note that $|f|^p \in \mathcal{L}^{\frac{r}{p}}$ and $1 \in \mathcal{L}^s$ fo all $s \ge 1$.)

- 4. (a) Consider two measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) where X = Y = [0, 1], both σ -algebras are the Borel sets of [0, 1], μ is Lebesgue measure and v is counting measure (see 3 (a) for the definition). If $D = \{(x, y) : x = y\}$, show that D belongs to the product σ -algebra, but that $\int v(D_x) d\mu(x) \neq \int \mu(D^y) d\nu(y)$. Why does this not contradict Tonelli's Theorem?
- (b) Consider the reals with Lebesgue measure and the plane with the induced product measure. Let f be the function from the plane to the reals defined by f(x,y) = 1 if $x \ge 0$ and $x \le y < x+1$, f(x,y) = -1 if $x \ge 0$ and $x+1 \le y < x+2$, and f(x,y) = 0 otherwise. Show that $\int \left[\int f(x,y) \, dx \right] dy \ne \int \left[\int f(x,y) \, dy \right] dx$. State why this does not contradict Fubini's Theorem and verify any claim.
- 5. Let λ and μ be measures on the σ -algebra \mathcal{A} for the space X. State what it means for λ to be absolutely continuous with respect to μ (symbolized $\lambda << \mu$). Define what is meant by a Radon-Nikodym derivative $d\lambda/d\mu$. Let λ and μ be σ -finite measures on (X,\mathcal{A}) , let $\lambda << \mu$, and let $f = d\lambda/d\mu$. If g is a nonnegative \mathcal{A} -measurable function on X, show that $\int g \, d\lambda = \int g \, f \, d\mu$.