## Algebra Preliminary Examination

August 2001

1) Let V be a finite dimensional vector space and  $W_1, W_2$  subspaces of V. Show that

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2).$$

Here  $W_1 + W_2 = \{w_1 + w_2 \mid w_i \in W_i\}.$ 

- 2) (i) Show that there does not exist a simple group of order 30.
- (ii) Let G be a finite group, p a prime, and P a normal p-Sylow subgroup of G. If  $\phi: G \longrightarrow G$  is a homomorphism, show that  $\phi(P) \subseteq P$ .
- 3) Let R be a commutative ring with identity. Call R a \*-ring if the intersection of all non-zero ideals of R is non-zero. (The ring R itself is an ideal.)
- (i) Let  $Z_n$  denote the ring of integers modulo n. Determine, with proof, those values of n when  $Z_n$  is a \*-ring.
- (ii) If R is an integral domain \*-ring, show that R is a field.

- 4) Let A be a finitely generated infinite abelian group, and n a positive integer. Show that there is a subgroup B of A with |A/B| = n.
- 5) Let R and S be integral domains with  $R \subseteq S$ . Suppose that R is a PID. If d is the greatest common divisor of a and b in R, show that d is the greatest common divisor of a and b in S.
- 6) Let R be a commutative ring with identity and consider the following commutative diagram of R-modules and R-module homomorphisms:

Here the rows are exact, meaning that  $\alpha, \alpha'$  are monomorphisms,  $\beta, \beta'$  are epimorphisms,  $Im(\alpha) = Ker(\beta)$ , and  $Im(\alpha') = Ker(\beta')$ .

Given that  $\theta_1$  and  $\theta_3$  are isomorphisms, show that  $\theta_2$  is an isomorphism.