Algebra Preliminary Examination

August 2000

- 1) Let A, B be $n \times n$ complex matrices. If $A = (a_{ij})$, then $tr(A) = \sum_{i=1}^{n} a_{ii}$.
- We call tr(A) the trace of A.
- (i) Show that tr(AB) = tr(BA).
- (ii) Show that similar matrices have the same trace.
- (iii) Show that a nilpotent matrix has trace 0.
- 2) Let R be a commutative ring with 1 and M a right R-module. Suppose that $f: M \longrightarrow M$ is an R-module homomorphism with the property that $f^2 = f$. Show that $M = Ker(f) \oplus f(M)$.
- 3) (a) For which values of n are all Abelian groups of order n cyclic?
- (b) Show that a group of order 12 has a normal Sylow subgroup.
- 4) Let D be a principal ideal domain.
- (a) Show that every prime ideal of D is maximal.
- (b) If D[x] is also a principal ideal domain, show that D is a field.

- 5) Let C be the center of the group G. If C has index n in G, show that every conjugacy class in G has at most n elements. (If $a \in G$, the conjugacy class of a is $\{gag^{-1} \mid g \in G\}$.)
- 6) For each of the following, tell if it is true or false and give a reason.
- i) If ϕ is an onto homomorphism from the group Z to the infinite group G, then ϕ is an isomorphism.
- (ii) If M is a Q-module (Q is the rationals) and N is a non-zero submodule, then N is a free Q-module.
- (iii) The subring of the rationals given by $\{m/n \mid m, n \in \mathbb{Z}, n \text{ odd}\}$ has a unique maximal ideal.
- (iv) Suppose G_1 and G_2 are finite groups and that H_i is a normal subgroup of G_i , for i=1,2. If $H_1\simeq H_2$ and $G_1/H_1\simeq G_2/H_2$, then $G_1\simeq G_2$.