Basics of abstract analysis.
- Sequences and series of functions on compact metric spaces, uniform convergence, equicontinuous families on $C(K)$ and Arzelà-Ascoli theorem. Algebras of functions that separate points and Stone-Weierstrass theorem in $C(K)$.

Abstract integration (Lebesgue integration theory).
- Measure spaces and measurable functions.
- Outer measures and Carathéodory’s theorem.
- Convergence theorems: Fatou’s Lemma, Monotone and Dominated Convergence Theorems.
- Product measures. Fubini’s and Tonelli’s theorems.
- Signed measures and complex measures. Hahn-Jordan decomposition.
- Modes of convergence and how they are related: uniform, pointwise, almost everywhere, in measure, in L^p-norm.
- Duality: Riesz Representation Theorem for bounded linear functionals on $C(K)$.

Integration on \mathbb{R}^n.
- Lebesgue measure on \mathbb{R}^n. Borel and Lebesgue σ-algebras. Non-measurable sets.
- Borel measures on \mathbb{R} and their completion (Lebesgue-Stieltjes measures).
- Functions of bounded variation on \mathbb{R} and absolutely continuous functions on \mathbb{R}. Riemann-Stieltjes integral.

L^p-spaces.
- Basic convexity inequalities: Hölder (including Cauchy-Schwarz), Minkowski, Jensen.
- Completeness. Separability.

References.
Real Analysis and Probability, R.M. Dudley.
Real Analysis: Modern Techniques and Their Applications, G. Folland.
Real and Complex Analysis, W. Rudin.
Real Analysis, H.M. Royden.
Measure and Integral, R.L. Wheeden and A. Zygmund.

Date: February 11, 2011.