Measure and Integration Prelim, January 2011

1. Let \(f : [0, 1] \to \mathbb{R} \) be bounded.
 (a) Show that the set where \(f \) is continuous is Lebesgue measurable (even if \(f \) is not Lebesgue measurable).
 (b) Show that if \(f \) is not continuous on a set of full Lebesgue measure, then \(f \) is not Riemann integrable.

 Hint: consider the standard partition of \([0, 1]\) into \(2^n\) subintervals, and define \(F_n(x) \) to be the sup of \(f \) over the interval containing \(x \) and define \(f_n(x) \) to be the inf of \(f \) over this interval.

2. Let \((X, \mathcal{F}, \mu)\) be a measure space. Suppose that \(f \) is a measurable nonnegative function satisfying \(\int f \, d\mu = 1 \). Compute \(\lim_{n \to \infty} \int n \log \left(1 + \left(\frac{f(x)}{n} \right)^\alpha \right) \, d\mu(x) \) in three different cases:
 (a) \(0 < \alpha < 1 \)
 (b) \(\alpha = 1 \)
 (c) \(\alpha > 1 \)

 Justify your answer in each case.

 Hint: writing \(n = n^\alpha n^{1-\alpha} \), and the inequalities \(\log(1 + u) \leq u \) and \(1 + u^\alpha \leq (1 + u)^\alpha \) for \(u \geq 0, \alpha \geq 1 \) may be useful.

3. (a) Suppose \(p, q \in (1, \infty) \) satisfy \(1/p + 1/q = 1 \), and \(a, b \in (0, \infty) \). Prove that \(ab \leq a^{p}/p + b^{q}/q \). Hint: it may help to write the inequality in terms of \(s = p \log a \) and \(t = q \log b \).
 (b) State and prove Hölder’s inequality for \(p, q \in (1, \infty) \). Hint: first show that it is sufficient to prove the case where \(\|f\|_p = \|g\|_q = 1 \), then use (a).

4. Let \(f(x, y) \in L^1(Q) \) where \(Q = [0, 1] \times [0, 1] \) is the unit square in \(\mathbb{R}^2 \). Suppose that for any continuous function \(g(y) \) on \([0, 1]\) we know
 \[
 \int f(x, y)g(y) \, dy = 0 \quad \text{for almost every } x \in [0, 1].
 \]

 Prove that \(f = 0 \) a.e. on \(Q \).