2012 Real Analysis Prelim Exam

Justify your reasoning in all problems.

(1) (a) Does there exist a measure \(\mu \) on the set of rational numbers \(\mathbb{Q} \) such that all intervals are measurable and \(\mu([0,q)) = q \) for any positive rational number \(q \)? Prove or disprove.

(b) Suppose \((\mathbb{R}, \mathcal{A}, \mu)\) is the measure space where \(\mathcal{A} \) is the \(\sigma \)-algebra of all subsets and \(\mu \) is the counting measure (which means that \(\mu(A) = |A| \), the cardinality of \(A \), if \(A \) is a finite set, and \(\mu(A) = \infty \) if \(A \) is an infinite set). Prove or disprove that the function
\[
F(x) = \begin{cases}
 e^{-|x|} & \text{if } x \in \mathbb{Q} \\
 0 & \text{if } x \notin \mathbb{Q}
\end{cases}
\]
is integrable.

(c) in the same situation as in (b), prove or disprove that finitely supported functions are dense in \(L^1(\mathbb{R}, \mathcal{A}, \mu) \).

(2) Suppose \((\mathbb{R}, \mathcal{A}, \mu)\) is a measure space. Prove that
\[
\int_X f_n \, d\mu \to \int_X f \, d\mu
\]
if \(f_n, g_n, f, g \) are integrable, \(f_n \to f \) and \(g_n \to g \) \(\mu \)-a.e., \(|f_n| \leq g_n \) for all \(n \), and \(\int_X g_n \, d\mu \to \int_X g \, d\mu \).

Hint: use Fatou’s lemma for \(g_n + f_n \) and \(g_n - f_n \), or for \(2g_n - |f_n - f| \).

(3) Prove that \(F(x) = \sum_{n=0}^{\infty} e^{-n} \cos(1 + n^2 x^2) \) is a differentiable function on \(\mathbb{R} \).

(4) (a) Suppose \((\mathbb{R}, \mathcal{A}, \mu)\) is a measurable space where \(\mathcal{A} \) is the Borel \(\sigma \)-algebra of subsets and \(\mu \) is a Lebesgue-Stieltjes measure which is translation invariant in the sense that \(\mu(A) = \mu(\{x : x + y \in A\}) \) for any Borel set \(A \) and any \(y \in \mathbb{R} \). Prove that if \(\mu \) is finite on bounded intervals, then it is a multiple of the Lebesgue measure.

(b) Does there exist a non-zero \(f \in L^1([0, \infty), \mathcal{A}, \lambda) \) such that \(\int_{[0,q)} f \, d\lambda = 0 \) for any positive rational number \(q \)? Here \(([0, \infty), \mathcal{A}, \lambda)\) is the measure space with the Borel \(\sigma \)-algebra \(\mathcal{A} \) and the Lebesgue measure \(\lambda \). Prove or disprove.

(5) State and prove the Minkowski inequality.