INSTRUCTIONS: Answer three out of four questions. You do not have to prove results which you rely upon, just state them clearly.

Q1) (a) Suppose that \(p(x) \) is a polynomial of degree at most \(n \) which has \(n + 1 \) distinct roots. Show that \(p(x) \equiv 0 \). Use this result to show that the polynomial \(p_n \), of order at most \(n \), which interpolates a function \(f \) at \(n + 1 \) distinct points \(x_0, \ldots, x_n \) is unique. [Assume that the values which \(f \) takes at these points are \(f_0, \ldots, f_n \), respectively.]

(b) Suppose that \(f \in C^{n+1}[a,b] \) and that \(x_0, \ldots, x_n \) are \(n + 1 \) distinct points in the interval. Let \(p_n \) be the interpolation polynomial for \(f \) on \(x_0, \ldots, x_n \). Let \(e_n(x) = f(x) - p_n(x) \) denote the error function on \([a,b]\). Show that for each point \(x \in [a,b] \), there is a point \(\xi_x \in (a,b) \) such that
\[
e_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n).
\]

(c) A function \(f \) is defined on the interval \([0,1]\) and its derivatives satisfy that \(|f^{(m)}(x)| \leq m! \), for all \(x \in [0,1] \) and for all \(m = 0, 1, 2, \ldots \). For any \(0 < q < 1 \), let \(p_n(x), n \geq 0, \) be the interpolation polynomial of degree at most \(n \) which interpolates \(f \) at \(x_0 = 1, x_1 = q, x_2 = q^2, \ldots, x_n = q^n \). Show that
\[
limit_{n \to \infty} p_n(0) = f(0).
\]
Taking \(q = 1/2 \) and \(n = 10 \), find an upper estimate on \(|p_{10}(0) - f(0)| \).

Q2) The following compactness theorem is known: Let \(V \) be a finite dimensional normed vector space and \(W \) be a closed subset of \(V \). If there exists a constant \(M > 0 \) such that \(\|w\| \leq M \) for all \(w \in W \), then any sequence in \(W \) has a convergent subsequence.

Define \(P_n \) to be the vector space of polynomials of degree at most \(n \) and \(\|f\| = \max_{0 \leq x \leq 1} |f(x)| \) for any continous function \(f \in C[0,1] \).

(a) Show that for any \(f \in C[0,1] \), there exists a polynomial \(p^* \in P_n \) which minimizes the uniform norm of \(\|f - q\| \) for any \(q \in P_n \).

(Hint: let \(\inf_{w \in W} \|w - f\| = \alpha \). Then there exists a sequence \(\{w_i\} \subset W \) such that \(\|w_i - f\| \to \alpha \) as \(i \to \infty \). The sequence \(\{w_i\} \) is called a minimizing sequence.)

(b) Define a set on rational functions
\[
R_{n,m} = \{ \frac{p(x)}{q(x)} : p \in P_n \text{ and } q \in P_m \text{, } \|q\| = 1 \text{, } q > 0 \text{ on } [0,1], \}
\]
\(p \) and \(q \) have no common factors.}.
Our Goal: Given $f \in C[0, 1]$, prove the existence of $r^* \in R_{n,m}$ such that it minimizes the uniform norm of $\|f - r\|$ for any $r \in R_{n,m}$.

Let p_i/q_i be a minimizing sequence. Show that there exists a constant M such that $\|q_i\|, \|p_i/q_i\|$ and $\|p_i\|$ are all bounded by M for all i.

(c) By Q2a, we can assume that (a subsequence of) p_i and q_i converge to $p \in P_n$ and $q \in P_m$, respectively. Explain why $q \geq 0$ and can have at most finite number of roots of even multiplicity in $[0, 1]$.

(d) Let z be a root of q, explain why z has to be a root of p of at least the same multiplicity. (Hint: $\|p_i/q_i\| \leq M$ from part Q2b). Hence try to finish the proof for our goal stated in Q2b.

Q3) (a) Recall that the 1–norm of a vector $x = (x_1, \ldots, x_n) \in C^n$ is given by $\|x\|_1 = \sum_{i=1}^n |x_i|$. Show that for $n \times n$ matrix $A = (a_{i,j}) \in C^{n,n}$, the 1–matrix norm induced by the 1–vector norm, that is, by

$$\|A\|_1 = \max_{\|x\|_1 = 1, x \in C^n} \|Ax\|_1,$$

is given by

$$\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{i,j}|.$$

(b) Recall that for a matrix $B = (b_{i,j}) \in C^{n,n}$, $\|B\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n |b_{i,j}|$ and that if B is invertible, then $\text{cond}_\infty(B) := \|B\|_\infty \|B^{-1}\|_\infty$.

Suppose now that $A = (a_{i,j}) \in C^{n,n}$ is an invertible matrix with $\sum_{j=1}^n |a_{i,j}| = 1$, $1 \leq i \leq n$. Show, first, that if D is any invertible diagonal matrix, then $\|DA\|_\infty = \|D\|_\infty$ and use this to show that

$$\text{cond}_\infty(A) \leq \text{cond}_\infty(DA),$$

Discuss the following problem: Can the numerical stability of solving the system $Ax = b$, where A is as above, be improved by scaling the rows of the matrix A and the vector b by a diagonal matrix D, namely, by solving instead the system $A'x = b'$, where $A' = DA$ and $b' = Db$, for some invertible diagonal matrix D.

Q4) (a) Consider the uniform partition of the interval $[0, 2\pi]$,

$$x_k = \frac{2\pi k}{N}, \quad k = 0, \ldots, N-1, \quad N = 2M + 1.$$

Show that there exists a unique trigonometric polynomial

$$\Psi(x) = \frac{A_0}{2} + \sum_{h=1}^M (A_h \cos(hx) + B_h \sin(hx))$$

such that

$$\Psi(x_k) = y_k, \quad y_k \in C, \quad k = 0, \ldots, N-1.$$

(b) Show that if $y_k, k = 0, \ldots, N-1$ are real numbers, then A_h and B_h are also real numbers.