1. Let \(X, Y \) be topological spaces, \(Y \) Hausdorff, and let \(A \subset X \) be a non-empty set.

 (a) Suppose that \(f : A \to Y \) is continuous, where \(A \) is equipped with the subspace topology. Prove that if there exists a continuous extension of \(f \) to \(\overline{A} \), it is unique.

 (b) Assume that \(A \) is connected in the subspace topology. Prove that \(\overline{A} \) is connected in the subspace topology.

2. Let \(S \) denote the standard topology on \(\mathbb{R} \) and let \(T \) be the topology on \(\mathbb{R} \) generated by the intervals \([a, b) \), where \(a \in \mathbb{Q} \) and \(b \in \mathbb{R} \).

 (a) Suppose that \(f : (\mathbb{R}, T) \to (\mathbb{R}, S) \) is a function. Show that \(f \) is continuous if and only if the function \(g : (\mathbb{R}, S) \to (\mathbb{R}, S) \) given by \(g(x) = f(x) \) is right-continuous at all rational points and continuous at all irrational points.

 (b) Is \((\mathbb{R}, T) \) metrizable?

3. Suppose that \(X \) is a topological space homeomorphic to an open subset of a compact Hausdorff space. Prove that \(X \) is locally compact (=every point has a neighborhood contained in a compact set).

4. The real projective plane \(P^2 \) is the topological space of lines in \(\mathbb{R}^3 \) passing through the origin. One construction of \(P^2 \) is as a quotient space of the unit sphere \(S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \) with the subspace topology, obtained by identifying antipodal points.

 (a) Prove that \(P^2 \) is compact Hausdorff and that every point in \(P^2 \) has a neighborhood homeomorphic to the open unit ball in \(\mathbb{R}^2 \).

 (b) Prove that the quotient map is a covering map.

 (c) Find a path in \(S^2 \) whose image under the quotient map generates the fundamental group for \(P^2 \) based at the image of \((1, 0, 0)\) under the quotient map.

5. Show that \(\mathbb{R}^3 \) is not homeomorphic to \(\mathbb{R}^2 \).

6. Let \(X \) be the subspace of \(\mathbb{R}^3 \) equal to the union of the unit sphere with the three line segments \(\{(0, 0, z) : |z| \leq 1\} \cup \{(0, y, 0) : |y| \leq 1\} \cup \{(x, 0, 0) : |x| \leq 1\} \). Compute the fundamental group of \(X \) based at \((1, 0, 0)\).