1. (a) Suppose \(A \) and \(B \) are connected subsets of the space \(X \) and \(A \cap B \neq \emptyset \). Prove that \(A \cup B \) is connected.

(b) Let \(Y \) denote the set of all points in the plane \(\mathbb{R}^2 \) with at least one irrational coordinate. Prove or disprove: \(Y \) is connected.

(c) Let \(\{A_i\} \) be a sequence of connected subspaces of \(\mathbb{R}^2 \) such that \(A_{i+1} \subseteq A_i \) for \(i = 1, 2, 3, \ldots \). Prove or disprove: \(\cap \{A_i | i \geq 1\} \) is connected.

2. Let \(X \) be a compact Hausdorff space.

(a) Prove that \(X \) is normal.

(b) Let \(C_1 \supset C_2 \supset \ldots \supset C_n \supset C_{n+1} \supset \ldots \) be a nested sequence of closed subsets of \(X \). Prove that \(Y = \cap_{n=1}^{\infty} C_n \) is nonempty.

(c) In part (b), make the additional assumption that each \(C_n \) is connected and then prove that \(Y \) is also connected.

3. Let \(\sim \) be an equivalence relation on the compact Hausdorff space \(X \). Let \(p : X \to X/\sim \) denote the quotient map to the set of equivalence classes \(X/\sim \) equipped with the quotient topology. Recall that a subset \(B \) of \(X \) is saturated is \(B = p^{-1}(p(B)) \).

Assume that \(p \) is a closed map.

(a) Suppose that \(U \) is an open set in \(X \) containing a saturated set \(A \) of \(X \). Prove that there exists a saturated open set \(V \) of \(X \) such that \(A \subseteq V \subseteq U \).

(b) If \(X \) is compact and Hausdorff, prove that \(X/\sim \) is Hausdorff.

4. Recall that a space \(X \) is said to be first countable if at each \(x \in X \) there is some countable local base. This means, given \(x \), there is a countable collection \(\mathcal{O}_x \) of open sets containing \(x \) such that whenever \(U \) is an open set containing \(x \) there exists some \(V \in \mathcal{O}_x \) such that \(V \subseteq U \).

Let \(x \) be a point and \(A \) a subset of a first-countable space \(X \). Prove that \(x \in \overline{A} \) if and only if there exists some sequence of points in \(A \) converging to \(x \) in \(X \).