1. If $f : X \to Y$ is a continuous map from a separable space X onto a space Y, must Y be separable? Prove or give a counter example.

2. Let $\{K_n \mid n \in \mathbb{N}\}$ be a decreasing sequence of nonempty, compact subsets of a Hausdorff space X. If U is an open set in X with $\bigcap_{n=0}^{\infty} K_n \subseteq U$, prove that $K_n \subseteq U$ for some n. (\mathbb{N} denotes the set of positive integers.

3. Let $f : X \to Y$ be a continuous map and let $G = \{(x, y) \in X \times Y \mid y = f(x)\}$, where G has the subspace topology inherited from $X \times Y$.

 (a) Prove that X is homeomorphic to G.

 (b) If Y is a Hausdorff space, then prove that G is a closed subset of $X \times Y$.

4. Let $p : X \to X/\sim$ be the quotient map induced by an equivalence relation \sim on a space X. Suppose T is a topology on X/\sim such that p is continuous with respect to T and such that an arbitrary map $g : X/\sim \to Y$ is continuous with respect to T precisely when its composite $g \circ p : X \to Y$ is continuous. Must T be the quotient topology? Prove or disprove.

5. Let A and B be subsets of a topological space X such that $A \cup B$ and $A \cap B$ are both connected.

 (a) If A and B are both closed subsets of X, prove that A is connected.

 (b) Is the hypothesis that A and B be closed really needed to prove that A is connected? Justify your answer.