1. Prove that every infinite subset of a compact Hausdorff space has a limit point.

2. Prove that if X is a connected, countable, Hausdorff, normal space then X is a one-point space.

3. Let K and L be compact subsets of topological spaces X and Y, respectively. If W is an open set in \(X \times Y \) with \(K \times L \subseteq W \), show that there are open sets \(U \) in \(X \) and \(V \) in \(Y \) with \(K \times L \subseteq U \times V \subseteq W \).

4. (a) Let \(A \) and \(B \) be subsets of a topological space \(X \) such that \(A \cup B \) and \(A \cap B \) are both connected. If \(A \) and \(B \) are both closed in \(X \), prove that \(A \) and \(B \) are both connected.

 (b) Is the hypothesis that \(A \) and \(B \) be closed really needed? Prove or give a counterexample.

5. Given subsets \(A \) and \(B \) of connected spaces \(X \) and \(Y \), respectively, with \(A \neq X \) and \(B \neq Y \), prove that \((X \times Y) - (A \times B) \) is connected.