1. (a) Define what it means for a topological space to be compact (in terms of coverings by open sets).

(b) Prove that X is compact if and only if every collection of closed sets in X with the finite intersection property has a nonvoid intersection.

2. Let X and Y be topological spaces and assume that $X \times Y$ has the product topology.
Let $p : X \times Y \to X$ be the projection. Prove or give a counter example for each statement:

(a) p is open.

(b) p is closed.

(c) If X and Y are both connected then $X \times Y$ is connected.

3. Let R be an equivalence relation on a topological space X and let $p : X \to X/R$ denote the projection to the set of equivalence classes. There is the quotient topology \mathcal{T}_q on X/R defined by p. Let \mathcal{T} be an arbitrary topology on X/R that satisfies the following property: Given any function $g : X/R \to Y$, g is continuous (with respect to \mathcal{T}) if and only if the composition $g \circ p$ is continuous.

Must \mathcal{T} be the quotient topology \mathcal{T}_q? Prove or give a counter example.

4. Prove or give a counter example for each statement:

(a) A compact subspace A of a space X is closed in X.

(b) Let X be a compact space and Y be Hausdorff space. Every continuous map $g : X \to Y$ is also a closed map.

5. Let $\{X_\alpha | \alpha \in J\}$ be an indexed family of topological spaces. Prove that $\text{Cl}(\prod_{\alpha \in J} A_\alpha) = \prod_{\alpha \in J} \text{Cl}(A_\alpha)$ in $\prod_{\alpha \in J} X_\alpha$.