1. (a) Let \(f : X \rightarrow Y \) be a continuous map. If \(C \) is a compact subset of \(X \), prove that \(f(C) \) is compact.

(b) If \(C \) is a compact subset of \(X \) and \(X \) is Hausdorff, prove that \(C \) is a closed subset of \(X \).

2. Let \(A \) be a subset of the topological space \(X \) and define
\[
B(A) = \{ x \in X \mid U \cap A \neq \emptyset \neq U \cap (X - A) \text{ for all open neighborhoods } U \text{ of } x \}.
\]
Show that \(A \) is both open and closed in \(X \) if and only if \(B(A) = \emptyset \).

3. Let \(f : X \rightarrow Y \) be a continuous map and let \(G = \{ (x, y) \mid y = f(x) \text{ and } x \in X \} \subset X \times Y \). Prove that \(G \) is homeomorphic to \(X \).

4. Let \(T \) be the collection of sets \(U \subset \mathbb{R}^2 \) such that \(U \) is either the empty set or for each \((x, y) \in U \), there is an open line segment in each direction about \((x, y) \) that is contained in \(U \).

a) Show \(T \) is a topology on \(\mathbb{R}^2 \).

b) Compare \(T \) with the standard topology; that is, is it finer, coarser, the same or none of these?

c) Let \(L \) denote a straight line in \(\mathbb{R}^2 \). Compare the subspace topology on \(L \) induced by \(T \) with the subspace topology on \(L \) induced by the standard topology on \(\mathbb{R}^2 \).

d) Let \(S \) denote a circle in \(\mathbb{R}^2 \). Compare the subspace topology on \(S \) induced by \(T \) with the subspace topology on \(S \) induced by the standard topology on \(\mathbb{R}^2 \).

5. Let \(\{X_\alpha\}_{\alpha \in I} \) be an indexed family of connected spaces and let \(X = \prod_{\alpha \in I} X_\alpha \) be the product space. Prove that \(X \) is connected.

6. Let \(Y \) denote \(S^1 \times S^1 \subset \mathbb{R}^2 \) with the subspace topology. Let \(X \) denote \(S^1 \times S^1 \) with the quotient topology induced by \(p \) where \(p : I \times I \rightarrow S^1 \times S^1 \) is defined by \(p(x, y) = (\cos(2\pi x), \sin(2\pi y)) \) and \(I = [0, 1] \subset \mathbb{R} \). Prove that \(X \) is homeomorphic to \(Y \).