Below D denotes the disk $D = \{ z \in \mathbb{C} : |z| < 1 \}$.
In all cases the word “analytic” is used interchangeably with “holomorphic”.

1. (a) State and prove Schwarz lemma.
 (b) Let f be analytic on D with the property that $f(0) = 1$ and the real part of f is positive on D. Prove that
 \[
 |f(z)| \leq \frac{1 + |z|}{1 - |z|}.
 \]

2. In each of the cases below, determine whether there exists an analytic 1-1 mapping from U onto the complex plane. If there is, write down an explicit formula for such a mapping. Otherwise, prove that no such mapping exists.
 (a) $U = D$
 (b) $U = \{ z : |z - 2| < 2 \} \setminus \{ z : |z - 1| \leq 1 \}$.

3. Compute the following integral. Give full justification for your reasoning.
 \[
 \int_0^\infty \frac{x^2 + 1}{x^4 + 1} \, dx.
 \]

4. Suppose that f, φ are analytic in a domain containing D, and that f has no zeros on ∂D. State and prove a formula for the following integral using the zeros of f.
 \[
 \frac{1}{2\pi i} \int_{\partial D} \frac{f'}{f(z)} \varphi(z) \, dz.
 \]

5. Let f be a non constant analytic function on a domain containing 0. Assume $f(0) = 0$. Prove that for any $\delta > 0$ there exists $\epsilon > 0$ such that $f(\delta D) \supset \epsilon D$.

6. Let \mathcal{F} be the family of all functions f analytic in D such that
 \[
 \iint_D |f(x - iy)|^2 \, dx \, dy < 1.
 \]
 Prove that \mathcal{F} is a normal family.