Some complex analysis prelim questions

January 21, 2009

1. Suppose f is a nonconstant entire function such that $f \circ f(z) = f(z)$ for all z. Prove that f must be the identity function.

2. Suppose f is entire, $f(0) = 0$ and
 \[|f(z)| \leq e^{1/|z|} \]
 for all $z \neq 0$. Prove that f is identically 0.

3. Suppose for each n that f_n is a bounded continuous real-valued function on the unit circle $\{z : |z| = 1\}$. Suppose for each n that u_n is a function that is continuous on the closed unit disk $\{z : |z| \leq 1\}$, is harmonic in the open unit disk $\{z : |z| < 1\}$, and agrees with f_n on the unit circle. Show that $\{f_n\}$ is an equicontinuous family on the unit circle if and only if $\{u_n\}$ is an equicontinuous family on the closed unit disk.

4. Use residues to evaluate the definite integral
 \[\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 1)^2} \, dx. \]

5. Let $D = \{z = x + iy : 0 < y < 1, x > 0\}$. Find a conformal mapping of D onto the open unit disk.

6. Suppose that for each n the function f_n is analytic in the open unit disk, $|f_n(0)| \leq 1$, and for each $r < 1$ satisfies
 \[\int_{|z|=r} |f_n(z)|^2 \, |dz| \leq 1. \]
Show that every subsequence of \(\{f_n\} \) has a further subsequence which converges to a finite analytic function uniformly on each compact subset of the open unit disk.

7. Suppose for each \(n \) the function \(f_n \) is analytic on the open unit disk \(D \) and has exactly one zero in \(D \). Suppose the sequence \(\{f_n\} \) converges to \(f \) uniformly on each compact subset of the unit disk.

(a) Show that either \(f \) is identically zero on \(D \) or else has at most one zero in \(D \).

(b) Give an example of a sequence \(\{f_n\} \) where the limit function has no zeros in \(D \).