Instructions: Do all problems. Show your work in order to receive ANY credit. The terms region and domain mean the same thing. So do the terms complex analytic and holomorphic.

Problem 1: Suppose \(f \) is holomorphic in a region \(\Omega \) that contains the closed unit disk and \(|f(z)| < 1 \) when \(|z| = 1 \). How many fixed points (solutions to \(z = f(z) \)) must \(f \) have in the open unit disk \(\Delta \).

Problem 2: Suppose \(f \) is an entire function and there are constants \(A \) and \(B \) and a positive integer \(k \) so that
\[|f(z)| \leq A + B|z|^k \]
for all \(z \). Prove that \(f \) must be a polynomial.

Problem 3: Compute (justifying your computations)

\[(i) \quad \int_{-\infty}^{\infty} \frac{e^{ax}}{1 + x^2} \, dx. \]

\[(ii) \quad \int_{0}^{2\pi} \frac{d\theta}{a + b \sin \theta} \quad \text{where} \ a > b > 0. \]

Problem 4: Suppose \(f \) is holomorphic and non-zero in the simply connected domain \(\Omega \).

(i) If \(n \) is any positive integer, prove that there exists a function \(g \), holomorphic in \(\Omega \) and satisfying \(g^n = f \).

(ii) How many holomorphic solutions does \(g^3 = f \) have in a small disk about 0 if \(f(z) := z^4 + 16 \).

(iii) Find the Taylor polynomial of degree 5 for the holomorphic solution \(g \) in part (ii) for which \(g(0) \in \mathbb{R} \).

Problem 5: Suppose \(D \) is a region in \(\mathbb{C} \) and \(H(D) \) denotes the space of functions which are holomorphic in \(D \). Let \((f_n) \) be a locally bounded sequence in \(H(D) \) and \(f \in H(D) \). Assume
\[A := \{ x \in D \mid \lim_{n} f_n(x) = f(x) \} \]
has a limit point in \(D \). Show that there exists a subsequence of \((f_n) \) which converges to \(f \) uniformly on compact subsets of \(D \).

Problem 6: In a domain \(D \) containing 0, a function
\[f : \quad D \rightarrow \mathbb{C} \quad \text{with} \quad (x,y) \mapsto f(x,y) = u(x,y) + iv(x,y) \]
is complex harmonic if both \(u \) and \(v \) are (real) harmonic in \(D \). You may assume that \(f \) admits an absolutely convergent double power series expansion
\[f(z, \bar{z}) = \sum_{n,m=0}^{\infty} a_{nm} z^n \bar{z}^m \]
and that the usual differentiation and integration rules for power series in one variable are valid here.

(i) Under what conditions on the coefficients \(a_{nm} \) is \(f \) holomorphic in \(D \)?

(ii) Under what conditions on the coefficients \(a_{nm} \) is \(f \) complex harmonic in \(D \)?