Preliminary Examination
Complex Analysis
August 25, 2000

Instructions: Do all problems. Show your work in order to receive ANY credit. Where necessary, justify the validity of your answers and computations.

Problem 1: Compute
\[\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + 1)^2} \, dx. \]

Problem 2:
Let \(H \) denote the right halfplane, i.e. \(H := \{ z : \Re z \geq 0 \} \). Given that \(f : H \to H \) is holomorphic and \(f(1) = 1 \), show

a) \(|f'(1)| \leq 1 \), and

b) \[\frac{|f(z) - 1|}{|f(z) + 1|} \leq \frac{|z - 1|}{|z + 1|}. \]

Problem 3: Let \(f \) and \(g \) be entire functions with \(|f(z)| \leq |g(z)| \) for all \(z \in \mathbb{C} \). Prove that there exists a constant \(K \) so that \(f(z) = K g(z) \).

Problem 4: Determine the number of zeroes of the function \(g(z) = e^{z-1} - az \) inside the unit circle \(\{ |z| < 1 \} \) assuming \(|a| > 1 \).

Problem 5: Let \(\mathcal{H}(D) \) be the set of functions holomorphic in a domain \(D \) and suppose that \(\mathcal{F} \subset \mathcal{H}(D) \) is some normal family in \(D \). Prove that \(\mathcal{F}' := \{ f' : f \in \mathcal{F} \} \) is also a normal family.

Problem 6: Suppose that \(f \) is entire and \(f(z) \) is real if and only if \(z \) is real. Show that \(f \) can have at most one zero in \(\mathbb{C} \).

Problem 7: Suppose that \(\Delta \) is the unit disk and \(f \) is a holomorphic map of \(\Delta \) into itself with \(f(0) = 0 \). If \(f^{[n]} := f \circ f \circ \cdots \circ f \), state the conditions under which \(\lim_{n \to \infty} f^{[n]} \) exists in all of \(\Delta \). When the limit does exist, what is it?