Choose 5 out of the 6 questions.

(1a) State and prove an existence and uniqueness theorem for the equation \(\frac{d^2x}{dt^2} + f(x) = 0 \) with initial conditions \(x(0) = a \) and \(x'(0) = b \) under the assumption that \(f \) and its partial derivatives are continuous. (You can assume the Contraction Mapping Theorem).

(1b) Let \(a = b = f(0) = 0 \) in part (a). Can \(x(t) = t^3 \) be a solution to part (a)? Explain.

(2a) Find the Green’s function \(G(x, y) \) for the operator \(A \) where

\[
Au = -u'' + u
\]

with \(u'(0) = u'(1) = 0 \).

(2b) Define \(T : L^2(0,1) \to L^2(0,1) \) such that for any \(f \in L^2(0,1) \),

\[
(Tf)(x) = \int_0^1 G(x, y)f(y) \, dy .
\]

Explain what spectral theorem is and why it is applicable.

(2c) Show that \(\|T\| = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } T\} \).

(2d) Compute \(\|T\| \). (hint: find eigenvalues of \(A \)).
(3) Let
\[U(x, y) = \begin{cases}
1, & \text{if } 0 \leq x \leq 1, \ y \geq 0, \\
0, & \text{otherwise},
\end{cases} \]
Compute its distributive derivative \(D_{xy}U \) in \(\mathbb{R}^2 \).

(4) Let \(H \) be a Hilbert space and \(K : H \to H \) is a linear, bounded, compact operator. Define \(A = I + K \). Show that if \(A \) is injective, then it is surjective.

(5) Let \(H \) be a Hilbert space and \(A : H \to H \) is compact. Show that
(a) \(x_n \rightharpoonup x \) weakly implies \(Ax_n \to Ax \).
(b) The operator norm of \(A \) is attained.

(6a) Let \(K \) be a closed convex set in a Hilbert space \(X \). Let \(x \in X \) and let \(y \) be the point of \(K \) closest to \(x \). Prove that \(\Re \langle x - y, v - y \rangle \leq 0 \) for all \(v \in K \), where \(\Re \) denotes the real part.
(6b) For each \(x \) in \(X \), we use \(Px \) to denote the point of \(K \) closest to \(x \). Using part (a) or otherwise, prove that
\[\|Px - Pz\| \leq \|x - z\| . \]