Math 310 Preliminary Examination August 2006

DO FIVE OF THE SIX QUESTIONS!

Problem 1: (20 pts)
(a) State an existence and uniqueness theorem for the equations

\[x' = f(x, y), \]
\[y' = g(x, y), \]

with initial conditions \(x(0) = a \) and \(y(0) = b \) under the assumptions that \(f, g \), and all their partial derivatives are continuous.

(b) For the system:

\[x' = x(1 - x - y), \]
\[y' = y(1 - 2x - 3y), \]

with \(x(0) = y(0) = 1/10 \). Can either \(x(t) \) or \(y(t) \) become 0 at finite time? Justify your reasoning.

Problem 2: (20 pts)
(a) Let \(\tau_0 \in (0, 1) \). Find the Green's function for

\[-y'' + y = \delta(t - \tau_0) \]
\[y'(0) = y(1) = 0 \]

(b) Show that there exists a unique solution for

\[-y'' + y = \lambda \tan^{-1} y + \cos x \]
\[y'(0) = y(1) = 0 \]

if \(|\lambda| \) is sufficiently small.
Problem 3: (20 pts)
Prove that if an operator is of the form \(A = I + K \) where \(K \) is compact linear operator on a Hilbert space, then \(A \) is injective implies \(A \) is surjective.

Problem 4: (20 pts)
Find \(\Delta \ln(x^2 + y^2) \) in \(R^2 \) in terms of distributional derivatives.

Problem 5: (20 pts)
Let \(T \) be a compact operator on a Hilbert space \(\mathcal{H} \) and \(\{ \phi_n : n \in N \} \) be an orthonormal system of \(\mathcal{H} \).
(a) Show that \(\phi_n \rightharpoonup 0 \) weakly.
(b) Using (a) or otherwise, show that \(\lim_{n \to \infty} \| T\phi_n \| = 0 \).
(c) Let \(\lambda_n \) be a sequence of complex numbers. Show that the operator \(S \) defined by \(Sf = \sum_{n=1}^{\infty} \lambda_n \langle f, \phi_n \rangle \phi_n \) is compact if and only if \(\lim_{n \to \infty} \lambda_n = 0 \).

Problem 6: (20 pts)

a) Suppose \(f \) is an operator from Banach space \(X \) to itself. Give the definition of \(f \) being Fréchet differentiable at a point \(x \in X \).
b) Let \(X = C[0, 1] \) with sup-norm. Let \(t_i \in [0, 1] \) and \(v_i \in C[0, 1] \), and define \(f(x) = \sum_{i=1}^{n} (x(t_i))^2 v_i \). Prove that \(f \) is Fréchet differentiable at all points of \(X \) and give a formula for \(f' \).