1) Let V be a finite dimensional vector space and W_1, W_2 subspaces of V. Show that

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

Here $W_1 + W_2 = \{w_1 + w_2 \mid w_i \in W_i\}$.

2) (i) Show that there does not exist a simple group of order 30.

(ii) Let G be a finite group, p a prime, and P a normal p-Sylow subgroup of G. If $\phi : G \to G$ is a homomorphism, show that $\phi(P) \subseteq P$.

3) Let R be a commutative ring with identity. Call R a $*$-ring if the intersection of all non-zero ideals of R is non-zero. (The ring R itself is an ideal.)

(i) Let \mathbb{Z}_n denote the ring of integers modulo n. Determine, with proof, those values of n when \mathbb{Z}_n is a $*$-ring.

(ii) If R is an integral domain $*$-ring, show that R is a field.
4) Let A be a finitely generated infinite abelian group, and n a positive integer. Show that there is a subgroup B of A with $|A/B| = n$.

5) Let R and S be integral domains with $R \subseteq S$. Suppose that R is a PID. If d is the greatest common divisor of a and b in R, show that d is the greatest common divisor of a and b in S.

6) Let R be a commutative ring with identity and consider the following commutative diagram of R-modules and R-module homomorphisms:

$$
\begin{array}{cccccc}
0 & \to & A & \overset{\alpha}{\to} & B & \overset{\beta}{\to} & C & \to & 0 \\
\theta_1 \downarrow & & \theta_2 \downarrow & & \theta_3 \downarrow \\
0 & \to & A' & \overset{\alpha'}{\to} & B' & \overset{\beta'}{\to} & C' & \to & 0
\end{array}
$$

Here the rows are exact, meaning that α, α' are monomorphisms, β, β' are epimorphisms, $\text{Im}(\alpha) = \text{Ker}(\beta)$, and $\text{Im}(\alpha') = \text{Ker}(\beta')$.

Given that θ_1 and θ_3 are isomorphisms, show that θ_2 is an isomorphism.