Section 2.3: Inverse of a Square Matrix

Definition: The inverse of an \(n \times n \) matrix \(A \) is a matrix \(B \) such that

\[
AB = BA = I_n.
\]

If \(B \) exists, we write \(B = A^{-1} \). If a matrix \(A \) does not have an inverse, we call \(A \) singular. If the inverse of \(A \) does exist, we call \(A \) nonsingular.

Example 1: Determine if the following matrices are inverses of each other.

\[
A = \begin{bmatrix}
-2 & 4 \\
-3 & 7 \\
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
-7/2 & 2 \\
-3/2 & 1 \\
\end{bmatrix}
\]
Finding Inverses

Let $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$

Guass-Jordan Elimination: Use Guassian elimination to get 1’s on the diagonal 0’s below and above the 1’s.

To find the inverse A^{-1} of a matrix A:
1. Form the augmented matrix $[A|I]$.
2. Use elementary row operations (Guass-Jordan method) to reduce $[A|I]$ to $[I|B]$, if possible.
3. If step 2 is possible, then $B = A^{-1}$. If not, then A is singular.
Elementary Row Operations:

1. **Interchange** the \(i \)th row and the \(j \)th row.

 \(R_i \leftrightarrow R_j \)

2. **Multiply** each member of the \(i \)th row by a non-zero constant \(k \).

 \(kR_i \rightarrow R_i \)

3. **Replace** each element in the \(i \)th row with the corresponding element of the \(i \)th row plus \(k \) times the \(j \)th row.

 \(R_i + kR_j \rightarrow R_i \)

Example 2: Find the inverse, if it exists, of \(A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \).
Example 3: Find the inverse, if it exists, of \(B = \begin{bmatrix} 4 & -2 & 3 \\ 8 & -3 & 5 \\ 7 & -2 & 4 \end{bmatrix} \).
Example 4: Find the inverse, if it exists, of $A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 4 \\ 1 & 5 & 10 \end{bmatrix}$.
Example 5: Application to systems of linear equations. Use an inverse of a matrix to solve the following system of equations.

\[
\begin{align*}
4x - 2y + 3z &= 3 \\
8x - 3y + 5z &= 2 \\
7x - 2y + 4z &= 0
\end{align*}
\]