4.2 Null Spaces, Column Spaces, & Linear Transformations

The null space of an \(m \times n \) matrix \(A \), written as \(\text{Nul} \ A \), is the set of all solutions to the homogeneous equation \(Ax = 0 \).

\[
\text{Nul} \ A = \{x : x \text{ is in } \mathbb{R}^n \text{ and } Ax = 0\} \quad \text{(set notation)}
\]

THEOREM 2

The null space of an \(m \times n \) matrix \(A \) is a subspace of \(\mathbb{R}^n \). Equivalently, the set of all solutions to a system \(Ax = 0 \) of \(m \) homogeneous linear equations in \(n \) unknowns is a subspace of \(\mathbb{R}^n \).

Proof: \(\text{Nul} \ A \) is a subset of \(\mathbb{R}^n \) since \(A \) has \(n \) columns. Must verify properties a, b and c of the definition of a subspace.

Property (a) Show that \(0 \) is in \(\text{Nul} \ A \). Since \(\ldots \), \(0 \) is in \(\ldots \).

Property (b) If \(u \) and \(v \) are in \(\text{Nul} \ A \), show that \(u + v \) is in \(\text{Nul} \ A \). Since \(u \) and \(v \) are in \(\text{Nul} \ A \),

\[
\ldots \text{ and } \ldots.
\]

Therefore

\[
A(u + v) = \ldots + \ldots = \ldots + \ldots = \ldots.
\]

Property (c) If \(u \) is in \(\text{Nul} \ A \) and \(c \) is a scalar, show that \(cu \) in \(\text{Nul} \ A \):

\[
A(cu) = \ldots A(u) = c0 = 0.
\]

Since properties a, b and c hold, \(A \) is a subspace of \(\mathbb{R}^n \).
Solving $Ax = 0$ yields an **explicit description** of $	ext{Nul } A$.

EXAMPLE: Find an explicit description of $	ext{Nul } A$ where \(A = \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix} \).

Solution: Row reduce augmented matrix corresponding to $Ax = 0$:

\[
\begin{bmatrix} 3 & 6 & 6 & 3 & 9 & | & 0 \\ 6 & 12 & 13 & 0 & 3 & | & 0 \end{bmatrix} \rightarrow \ldots \rightarrow \begin{bmatrix} 1 & 2 & 0 & 13 & 33 & | & 0 \\ 0 & 0 & 1 & -6 & -15 & | & 0 \end{bmatrix}
\]

\[
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix}
\]

\[
= x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix}
\]

Then \(\text{Nul } A = \text{span}\{u, v, w\} \).

Observations:

1. Spanning set of $\text{Nul } A$, found using the method in the last example, is automatically linearly independent:

\[
\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow c_1 = _____ \quad c_2 = _____ \quad c_3 = _____
\]

2. If $\text{Nul } A \neq \{0\}$, the the number of vectors in the spanning set for $\text{Nul } A$ equals the number of free variables in $Ax = 0$.

The column space of an $m \times n$ matrix A (Col A) is the set of all linear combinations of the columns of A.

If $A = [a_1 \ldots a_n]$, then

$$
\text{Col } A = \text{Span}\{a_1, \ldots, a_n\}
$$

THEOREM 3

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m.

Why? (Theorem 1, page 221)

Recall that if $Ax = b$, then b is a linear combination of the columns of A. Therefore

$$
\text{Col } A = \{b : b = Ax \text{ for some } x \text{ in } \mathbb{R}^n\}
$$

EXAMPLE: Find a matrix A such that $W = \text{Col } A$ where $W = \left\{ \begin{pmatrix} x - 2y \\ 3y \\ x + y \end{pmatrix} : x, y \in \mathbb{R}\right\}$.

Solution:

$$
\begin{pmatrix}
 x - 2y \\
 3y \\
 x + y
\end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + y \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}
$$

$$
= \begin{pmatrix}
 x \\
 y
\end{pmatrix}
$$

Therefore $A = \begin{pmatrix}
 x \\
 y
\end{pmatrix}$.

By Theorem 4 (Chapter 1),

The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation $Ax = b$ has a solution for each b in \mathbb{R}^m.

The Contrast Between Nul A and Col A

EXAMPLE: Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1 \end{bmatrix}$.

(a) The column space of A is a subspace of \mathbb{R}^k where $k =$ _____.

(b) The null space of A is a subspace of \mathbb{R}^k where $k =$ _____.

(c) Find a nonzero vector in Col A. (There are infinitely many possibilities.)

\[
\begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 6 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 7 \\ 10 \\ 1 \end{bmatrix} = \]

(d) Find a nonzero vector in Nul A. Solve $Ax = 0$ and pick one solution.

\[
\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 7 & 0 \\ 3 & 6 & 10 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ row reduces to } \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\]

$x_1 = -2x_2$

x_2 is free

$x_3 = 0$

Let $x_2 =$ ____ and then

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}
\]

Contrast Between Nul A and Col A where A is $m \times n$ (see page 232)
Review

A **subspace** of a vector space V is a subset H of V that has three properties:

a. The zero vector of V is in H.

b. For each u and v in H, $u + v$ is in H. (In this case we say H is closed under vector addition.)

c. For each u in H and each scalar c, cu is in H. (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.

THEOREM 1, 2 and 3 (Sections 4.1 & 4.2)

If v_1, \ldots, v_p are in a vector space V, then $\text{Span}\{v_1, \ldots, v_p\}$ is a subspace of V.

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n.

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m.

EXAMPLE: Determine whether each of the following sets is a vector space or provide a counterexample.

(a) $H = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x - y = 4 \right\}$. **Solution:** Since $$ is not in H, H is not a vector space.

(b) $V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : \begin{array}{l} x - y = 0 \\ y + z = 0 \end{array} \right\}$. **Solution:** Rewrite

$$
\begin{align*}
x - y &= 0 \\
y + z &= 0
\end{align*}
$$
as

$$
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

So $V = \text{Nul } A$ where $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Since $\text{Nul } A$ is a subspace of \mathbb{R}^2, V is a vector space.
(c) \(S = \left\{ \begin{bmatrix} x + y \\ 2x - 3y \\ 3y \end{bmatrix} : x, y, z \text{ are real} \right\} \)

One Solution: Since
\[
\begin{bmatrix} x + y \\ 2x - 3y \\ 3y \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix},
\]

\(S = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix} \right\} ; \) therefore \(S \) is a vector space by Theorem 1.

Another Solution: Since
\[
\begin{bmatrix} x + y \\ 2x - 3y \\ 3y \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix},
\]

\(S = \text{Col} \ A \) where \(A = \begin{bmatrix} 1 & 1 \\ 2 & -3 \\ 0 & 3 \end{bmatrix} \); therefore \(S \) is a vector space, since a column space is a vector space.

Kernal and Range of a Linear Transformation

A linear transformation \(T \) from a vector space \(V \) into a vector space \(W \) is a rule that assigns to each vector \(x \) in \(V \) a unique vector \(T(x) \) in \(W \), such that

i. \(T(u + v) = T(u) + T(v) \) for all \(u, v \) in \(V \);
ii. \(T(cu) = cT(u) \) for all \(u \) in \(V \) and all scalars \(c \).

The kernel (or null space) of \(T \) is the set of all vectors \(u \) in \(V \) such that \(T(u) = 0 \). The range of \(T \) is the set of all vectors in \(W \) of the form \(T(u) \) where \(u \) is in \(V \).

So if \(T(x) = Ax \), \(\text{col} \ A = \text{range of} \ T. \)