Math 2410, Answer to Quiz 7 (4/6/09)

(1) Find the general solution to the equation

\[y'' + 4y' + 20y = 2 \cos(2t) . \]

Answer: We have \(y_h = e^{\alpha t} \) being a homogeneous solution if \(\alpha^2 + 4 \alpha + 20 = 0 \). Thus \(\alpha = -2 \pm 4i \). So

\[y_h = c_1 e^{-2t} \cos(4t) + c_2 e^{-2t} \sin(4t) . \]

Let \(y_p = A \cos(2t) + B \sin(2t) \). Putting into the equations, we have

\[16A + 8B = 2 , \]

\[-8A + 16B = 0 . \]

Thus \(A = 1/10 \) and \(B = 1/20 \). Hence general solution is

\[y = y_p + y_h = \cos(2t)/10 + \sin(2t)/20 + c_1 e^{-2t} \cos(4t) + c_2 e^{-2t} \sin(4t) . \]

(2) Find the solution to the equation

\[y'' + 4y = \sin(2t) \]

with initial condition \(y(0) = 0 \) and \(y'(0) = 0 \).

Answer: We have \(y_h = e^{\alpha t} \) being a homogeneous solution if \(\alpha^2 + 4 = 0 \). Thus \(\alpha = \pm 2i \). So

\[y_h = c_1 \cos(2t) + c_2 \sin(2t) . \]

Since the forcing term \(\sin(2t) \) coincides with the homogeneous solution, we need to add a \(t \) to the usual particular solution guess.

Let’s consider

\[z'' + 4z = e^{2it} \]

Assume \(z_p = Ate^{2it} \). Upon substituting into the equation, we find that \(A = 1/(4i) = -i/4 \). Therefore \(z_p = -ite^{2it}/4 \) and

\[y_p = \mathcal{I}m(z_p) = -t \cos(2t)/4 . \]
Thus the general solution is

\[y = y_p + y_h = -t \cos(2t)/4 + c_1 \cos(2t) + c_2 \sin(2t) . \]

Putting in the initial conditions, we find \(c_1 = 0 \) and \(c_2 = 1/8 \). Hence

\[y = -t \cos(2t)/4 + \sin(2t)/8 . \]