Math 2410, Answer to Quiz 3 (2/16/09)

There are 2 questions. All answers have to be accompanied by supporting calculation or reasoning.

(1) Draw the bifurcation diagram for the equation

\[\frac{dy}{dt} = y^2(y + \mu) . \]

Fill in a few representative phase lines to indicate the stability of the equilibrium solutions. At what value of \(\mu \) does bifurcation occur?

Answer: The equilibrium solution are solution of \(y^2(y + \mu) = 0 \). In other words, \(y = 0 \) or \(y = -\mu \). In the \((\mu, y) \) plane, they can be represented by two straight lines \(y = 0 \) and \(y = -\mu \). When \(\mu = 0 \), bifurcation occurs. The number of equilibrium solutions changes from 2 to 1 and back to 2 again. (See figure 1).

(2a) Find the general solution to the linear homogeneous equation \(\frac{dy}{dt} - y = 0 \).

Answer: The general solution to the homogeneous equation is \(y_h = Ce^t \) for any arbitrary constant \(C \).

(2b) Use the method of undetermined coefficient to find a particular solution to the linear non-homogeneous equation \(\frac{dy}{dt} - y = 3e^{2t} \). Then find its general solution.

Answer: A particular solution will be of the form \(y_p = Ae^{2t} \). Putting it into the non-homogeneous equation,

\[2Ae^{2t} - Ae^{2t} = 3e^{2t} \]

which gives \(A = 3 \). Thus the general solution for the non-homogeneous equation is:

\[y = y_p + y_h = 3e^{2t} + Ce^t \]

for any constant \(C \).
Figure 1: bifurcation diagram for $\frac{dy}{dt} = y^2(y + \mu)$.